{"title":"50 年历程:含氨基酸的核苷 acp3U 在糖核糖核酸中将 N-糖和核糖核酸连接起来","authors":"Kfir B. Steinbuch, Yitzhak Tor","doi":"10.1016/j.molcel.2024.09.014","DOIUrl":null,"url":null,"abstract":"In a recent publication in <em>Cell</em>, Xie et al.<span><span><sup>1</sup></span></span> report a sensitive and scalable method for the detection and characterization of native glycoRNAs and identify acp<sup>3</sup>U, an abundant modified nucleoside discovered 50 years ago in tRNA<sup>Phe</sup>, as one of the primary attachment sites for N-glycans.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"112 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"50 years in the making: acp3U, an amino-acid-containing nucleoside, links N-glycans and RNA in glycoRNA\",\"authors\":\"Kfir B. Steinbuch, Yitzhak Tor\",\"doi\":\"10.1016/j.molcel.2024.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent publication in <em>Cell</em>, Xie et al.<span><span><sup>1</sup></span></span> report a sensitive and scalable method for the detection and characterization of native glycoRNAs and identify acp<sup>3</sup>U, an abundant modified nucleoside discovered 50 years ago in tRNA<sup>Phe</sup>, as one of the primary attachment sites for N-glycans.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.09.014\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.09.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
50 years in the making: acp3U, an amino-acid-containing nucleoside, links N-glycans and RNA in glycoRNA
In a recent publication in Cell, Xie et al.1 report a sensitive and scalable method for the detection and characterization of native glycoRNAs and identify acp3U, an abundant modified nucleoside discovered 50 years ago in tRNAPhe, as one of the primary attachment sites for N-glycans.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.