生成材料和分子的响应匹配。

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-10-22 Epub Date: 2024-10-04 DOI:10.1021/acs.jctc.4c00998
Bingqing Cheng
{"title":"生成材料和分子的响应匹配。","authors":"Bingqing Cheng","doi":"10.1021/acs.jctc.4c00998","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion models have recently emerged as powerful tools for the generation of new molecular and material structures. The key insight is that the noise in these models is related to the response of the atoms to displacement, and the denoising step is thus analogous to the geometry relaxation of atomistic systems starting from a random structure. Building on this, we present a generative method called Response Matching (RM), which leverages the fact that each stable material or molecule exists at the minimum of its potential energy surface. Any perturbation induces a response in energy and stress, driving the structure back to equilibrium. Matching this response is closely related to score matching in diffusion models. Another important aspect of state-of-the-art diffusion models is the incorporation of physical symmetries such as translation, rotation, and periodicity. RM employs a machine learning interatomic potential and random structure search as the denoising model, inherently respecting these symmetries and exploiting the locality of atomic interactions. RM handles both molecules and bulk materials under the same framework. Its efficiency and generalization are demonstrated on three systems: a small organic molecular data set, stable crystals from the Materials Project, and one-shot learning on a single diamond configuration.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response Matching for Generating Materials and Molecules.\",\"authors\":\"Bingqing Cheng\",\"doi\":\"10.1021/acs.jctc.4c00998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffusion models have recently emerged as powerful tools for the generation of new molecular and material structures. The key insight is that the noise in these models is related to the response of the atoms to displacement, and the denoising step is thus analogous to the geometry relaxation of atomistic systems starting from a random structure. Building on this, we present a generative method called Response Matching (RM), which leverages the fact that each stable material or molecule exists at the minimum of its potential energy surface. Any perturbation induces a response in energy and stress, driving the structure back to equilibrium. Matching this response is closely related to score matching in diffusion models. Another important aspect of state-of-the-art diffusion models is the incorporation of physical symmetries such as translation, rotation, and periodicity. RM employs a machine learning interatomic potential and random structure search as the denoising model, inherently respecting these symmetries and exploiting the locality of atomic interactions. RM handles both molecules and bulk materials under the same framework. Its efficiency and generalization are demonstrated on three systems: a small organic molecular data set, stable crystals from the Materials Project, and one-shot learning on a single diamond configuration.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00998\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00998","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

扩散模型近来已成为生成新分子和材料结构的有力工具。关键的见解是,这些模型中的噪声与原子对位移的响应有关,因此去噪步骤类似于原子系统从随机结构开始的几何松弛。在此基础上,我们提出了一种称为 "响应匹配"(RM)的生成方法,它利用了每种稳定材料或分子都存在于其势能面最小值这一事实。任何扰动都会引起能量和应力的响应,促使结构回到平衡状态。匹配这种反应与扩散模型中的分数匹配密切相关。最先进的扩散模型的另一个重要方面是纳入物理对称性,如平移、旋转和周期性。RM 采用机器学习原子间势能和随机结构搜索作为去噪模型,本质上尊重这些对称性,并利用原子相互作用的局部性。RM 在同一框架下处理分子和块体材料。我们在三个系统上演示了它的效率和通用性:小型有机分子数据集、材料项目中的稳定晶体,以及对单一金刚石构型的单次学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Response Matching for Generating Materials and Molecules.

Diffusion models have recently emerged as powerful tools for the generation of new molecular and material structures. The key insight is that the noise in these models is related to the response of the atoms to displacement, and the denoising step is thus analogous to the geometry relaxation of atomistic systems starting from a random structure. Building on this, we present a generative method called Response Matching (RM), which leverages the fact that each stable material or molecule exists at the minimum of its potential energy surface. Any perturbation induces a response in energy and stress, driving the structure back to equilibrium. Matching this response is closely related to score matching in diffusion models. Another important aspect of state-of-the-art diffusion models is the incorporation of physical symmetries such as translation, rotation, and periodicity. RM employs a machine learning interatomic potential and random structure search as the denoising model, inherently respecting these symmetries and exploiting the locality of atomic interactions. RM handles both molecules and bulk materials under the same framework. Its efficiency and generalization are demonstrated on three systems: a small organic molecular data set, stable crystals from the Materials Project, and one-shot learning on a single diamond configuration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Changing Your Martini Can Still Give You a Hangover. Minimum Tracking Linear Response Hubbard and Hund Corrected Density Functional Theory in CP2K. Δ-Machine Learning to Elevate DFT-Based Potentials and a Force Field to the CCSD(T) Level Illustrated for Ethanol. Comparison of Matrix Product State and Multiconfiguration Time-Dependent Hartree Methods for Nonadiabatic Dynamics of Exciton Dissociation. Response Matching for Generating Materials and Molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1