Suzanne L. Warring, Hazel M. Sisson, Peter C. Fineran, Mojgan Rabiey
{"title":"水果采收前假单胞菌感染的生物控制策略。","authors":"Suzanne L. Warring, Hazel M. Sisson, Peter C. Fineran, Mojgan Rabiey","doi":"10.1111/1751-7915.70017","DOIUrl":null,"url":null,"abstract":"<p>The efficiency of global crop production is under threat from microbial pathogens which is likely to be worsened by climate change. Major contributors to plant disease are <i>Pseudomonas syringae</i> (<i>P. syringae</i>) pathovars which affect a variety of important crops. This opinion piece focuses on <i>P. syringae</i> pathovars <i>actinidiae</i> and <i>syringae</i>, which affect kiwifruit and stone fruits, respectively. We discuss some of the current control strategies for these pathogens and highlight recent research developments in combined biocontrol agents such as bacteriophages and combinations of bacteriophages with known anti-microbials such as antibiotics and bacteriocins.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450377/pdf/","citationCount":"0","resultStr":"{\"title\":\"Strategies for the biocontrol Pseudomonas infections pre-fruit harvest\",\"authors\":\"Suzanne L. Warring, Hazel M. Sisson, Peter C. Fineran, Mojgan Rabiey\",\"doi\":\"10.1111/1751-7915.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The efficiency of global crop production is under threat from microbial pathogens which is likely to be worsened by climate change. Major contributors to plant disease are <i>Pseudomonas syringae</i> (<i>P. syringae</i>) pathovars which affect a variety of important crops. This opinion piece focuses on <i>P. syringae</i> pathovars <i>actinidiae</i> and <i>syringae</i>, which affect kiwifruit and stone fruits, respectively. We discuss some of the current control strategies for these pathogens and highlight recent research developments in combined biocontrol agents such as bacteriophages and combinations of bacteriophages with known anti-microbials such as antibiotics and bacteriocins.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450377/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70017\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
全球作物生产的效率正受到微生物病原体的威胁,而气候变化可能会使这种威胁更加严重。植物病害的主要致病菌是影响多种重要作物的丁香假单胞菌(P. syringae)病原菌。这篇观点文章重点关注分别影响猕猴桃和核果的 P. syringae 病原菌 actinidiae 和 syringae。我们讨论了目前针对这些病原体的一些控制策略,并重点介绍了噬菌体等生物控制剂以及噬菌体与已知抗微生物剂(如抗生素和细菌素)组合的最新研究进展。
Strategies for the biocontrol Pseudomonas infections pre-fruit harvest
The efficiency of global crop production is under threat from microbial pathogens which is likely to be worsened by climate change. Major contributors to plant disease are Pseudomonas syringae (P. syringae) pathovars which affect a variety of important crops. This opinion piece focuses on P. syringae pathovars actinidiae and syringae, which affect kiwifruit and stone fruits, respectively. We discuss some of the current control strategies for these pathogens and highlight recent research developments in combined biocontrol agents such as bacteriophages and combinations of bacteriophages with known anti-microbials such as antibiotics and bacteriocins.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes