细菌病原体表型转换的机制和影响

IF 1.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Canadian journal of microbiology Pub Date : 2024-10-03 DOI:10.1139/cjm-2024-0116
Alexander Stephen Byrne, Nathalie Bissonnette, Kapil Tahlan
{"title":"细菌病原体表型转换的机制和影响","authors":"Alexander Stephen Byrne, Nathalie Bissonnette, Kapil Tahlan","doi":"10.1139/cjm-2024-0116","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms and Implications of Phenotypic Switching in Bacterial Pathogens.\",\"authors\":\"Alexander Stephen Byrne, Nathalie Bissonnette, Kapil Tahlan\",\"doi\":\"10.1139/cjm-2024-0116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.</p>\",\"PeriodicalId\":9381,\"journal\":{\"name\":\"Canadian journal of microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2024-0116\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2024-0116","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌在各种动态环境中会遇到各种压力条件,它们必须克服这些条件才能生存。它们实现这一目标的方法之一是发展表型异质性,在种群中引入多样性。这种不同的亚群可以通过调节成分的内源性波动产生,细菌可以表达不同的表型并在它们之间切换,有时是以可遗传和可逆的方式切换。这种切换还可能导致抗原变异,使致病细菌能够逃避宿主的免疫反应。因此,表型异质性在微生物致病、免疫逃避、抗生素耐药性、宿主生态位组织建立和环境持久性方面发挥着重要作用。这种异质性可能来自随机和响应开关,以及各种遗传和表观遗传机制。表型异质性的发展可能会产生毒力水平不同的克隆种群,促进生物膜的形成,并使抗生素在特定形态变体中持久存在。这篇综述深入探讨了目前对表型异质性的分子转换机制的理解,强调了它们在建立由特定细菌病原体引起的感染中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms and Implications of Phenotypic Switching in Bacterial Pathogens.

Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
71
审稿时长
2.5 months
期刊介绍: Published since 1954, the Canadian Journal of Microbiology is a monthly journal that contains new research in the field of microbiology, including applied microbiology and biotechnology; microbial structure and function; fungi and other eucaryotic protists; infection and immunity; microbial ecology; physiology, metabolism and enzymology; and virology, genetics, and molecular biology. It also publishes review articles and notes on an occasional basis, contributed by recognized scientists worldwide.
期刊最新文献
Mechanisms and Implications of Phenotypic Switching in Bacterial Pathogens. Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Totarol exhibits antibacterial effects through antibiofilm and combined interaction against vancomycin-resistant Enterococcus faecalis. Identification of key drivers of antimicrobial resistance in Enterococcus using machine learning. Influence of herbaceous litter thickness on bacterial community structure and physicochemical properties of aeolian sand.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1