临床组织中的机器学习辅助中红外光谱化学纤维胶原成像。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Biomedical Optics Pub Date : 2024-09-01 Epub Date: 2024-09-27 DOI:10.1117/1.JBO.29.9.093511
Wihan Adi, Bryan E Rubio Perez, Yuming Liu, Sydney Runkle, Kevin W Eliceiri, Filiz Yesilkoy
{"title":"临床组织中的机器学习辅助中红外光谱化学纤维胶原成像。","authors":"Wihan Adi, Bryan E Rubio Perez, Yuming Liu, Sydney Runkle, Kevin W Eliceiri, Filiz Yesilkoy","doi":"10.1117/1.JBO.29.9.093511","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tumor-microenvironment where fibrillar collagen's architectural changes are associated with cancer progression. To address this need, we present a multimodal computational imaging method where mid-infrared spectral imaging (MIRSI) is employed with second harmonic generation (SHG) microscopy to identify fibrillar collagen in biological tissues.</p><p><strong>Aim: </strong>To demonstrate a multimodal approach where a morphology-specific contrast mechanism guides an MIRSI method to detect fibrillar collagen based on its chemical signatures.</p><p><strong>Approach: </strong>We trained a supervised machine learning (ML) model using SHG images as ground truth collagen labels to classify fibrillar collagen in biological tissues based on their mid-infrared hyperspectral images. Five human pancreatic tissue samples (sizes are in the order of millimeters) were imaged by both MIRSI and SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random forest (RF) model. The other 68 million spectra were used to validate the collagen images generated by the RF-MIRSI model in terms of collagen segmentation, orientation, and alignment.</p><p><strong>Results: </strong>Compared with the SHG ground truth, the generated RF-MIRSI collagen images achieved a high average boundary <math><mrow><mi>F</mi></mrow> </math> -score (0.8 at 4-pixel thresholds) in the collagen distribution, high correlation (Pearson's <math><mrow><mi>R</mi></mrow> </math> 0.82) in the collagen orientation, and similarly high correlation (Pearson's <math><mrow><mi>R</mi></mrow> </math> 0.66) in the collagen alignment.</p><p><strong>Conclusions: </strong>We showed the potential of ML-aided label-free mid-infrared hyperspectral imaging for collagen fiber and tumor microenvironment analysis in tumor pathology samples.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 9","pages":"093511"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448345/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-assisted mid-infrared spectrochemical fibrillar collagen imaging in clinical tissues.\",\"authors\":\"Wihan Adi, Bryan E Rubio Perez, Yuming Liu, Sydney Runkle, Kevin W Eliceiri, Filiz Yesilkoy\",\"doi\":\"10.1117/1.JBO.29.9.093511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tumor-microenvironment where fibrillar collagen's architectural changes are associated with cancer progression. To address this need, we present a multimodal computational imaging method where mid-infrared spectral imaging (MIRSI) is employed with second harmonic generation (SHG) microscopy to identify fibrillar collagen in biological tissues.</p><p><strong>Aim: </strong>To demonstrate a multimodal approach where a morphology-specific contrast mechanism guides an MIRSI method to detect fibrillar collagen based on its chemical signatures.</p><p><strong>Approach: </strong>We trained a supervised machine learning (ML) model using SHG images as ground truth collagen labels to classify fibrillar collagen in biological tissues based on their mid-infrared hyperspectral images. Five human pancreatic tissue samples (sizes are in the order of millimeters) were imaged by both MIRSI and SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random forest (RF) model. The other 68 million spectra were used to validate the collagen images generated by the RF-MIRSI model in terms of collagen segmentation, orientation, and alignment.</p><p><strong>Results: </strong>Compared with the SHG ground truth, the generated RF-MIRSI collagen images achieved a high average boundary <math><mrow><mi>F</mi></mrow> </math> -score (0.8 at 4-pixel thresholds) in the collagen distribution, high correlation (Pearson's <math><mrow><mi>R</mi></mrow> </math> 0.82) in the collagen orientation, and similarly high correlation (Pearson's <math><mrow><mi>R</mi></mrow> </math> 0.66) in the collagen alignment.</p><p><strong>Conclusions: </strong>We showed the potential of ML-aided label-free mid-infrared hyperspectral imaging for collagen fiber and tumor microenvironment analysis in tumor pathology samples.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"29 9\",\"pages\":\"093511\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448345/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.29.9.093511\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.9.093511","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:无标记多模态成像方法可从同一样本中提供互补的结构和化学信息,这对组织综合分析至关重要。研究复杂的肿瘤微环境尤其需要这些方法,因为纤维胶原的结构变化与癌症进展有关。为满足这一需求,我们提出了一种多模态计算成像方法,即利用中红外光谱成像(MIRSI)和二次谐波发生(SHG)显微镜来识别生物组织中的纤维胶原:方法:我们使用SHG图像作为胶原蛋白的基本真实标签,训练了一个有监督的机器学习(ML)模型,以根据生物组织的中红外高光谱图像对其纤维胶原蛋白进行分类。利用 MIRSI 和 SHG 显微镜对五个人体胰腺组织样本(大小约为毫米)进行了成像。共有 280 万个 MIRSI 光谱用于训练随机森林 (RF) 模型。其他 6,800 万个光谱用于验证 RF-MIRSI 模型生成的胶原蛋白图像在胶原蛋白分割、定向和配准方面的效果:结果:与 SHG 地面真实值相比,生成的 RF-MIRSI 胶原图像在胶原分布方面达到了较高的平均边界 F 分数(4 像素阈值为 0.8),在胶原定向方面达到了较高的相关性(Pearson's R 0.82),在胶原排列方面也达到了类似的高相关性(Pearson's R 0.66):我们展示了利用 ML 辅助无标记中红外高光谱成像技术分析肿瘤病理样本中胶原纤维和肿瘤微环境的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-assisted mid-infrared spectrochemical fibrillar collagen imaging in clinical tissues.

Significance: Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tumor-microenvironment where fibrillar collagen's architectural changes are associated with cancer progression. To address this need, we present a multimodal computational imaging method where mid-infrared spectral imaging (MIRSI) is employed with second harmonic generation (SHG) microscopy to identify fibrillar collagen in biological tissues.

Aim: To demonstrate a multimodal approach where a morphology-specific contrast mechanism guides an MIRSI method to detect fibrillar collagen based on its chemical signatures.

Approach: We trained a supervised machine learning (ML) model using SHG images as ground truth collagen labels to classify fibrillar collagen in biological tissues based on their mid-infrared hyperspectral images. Five human pancreatic tissue samples (sizes are in the order of millimeters) were imaged by both MIRSI and SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random forest (RF) model. The other 68 million spectra were used to validate the collagen images generated by the RF-MIRSI model in terms of collagen segmentation, orientation, and alignment.

Results: Compared with the SHG ground truth, the generated RF-MIRSI collagen images achieved a high average boundary F -score (0.8 at 4-pixel thresholds) in the collagen distribution, high correlation (Pearson's R 0.82) in the collagen orientation, and similarly high correlation (Pearson's R 0.66) in the collagen alignment.

Conclusions: We showed the potential of ML-aided label-free mid-infrared hyperspectral imaging for collagen fiber and tumor microenvironment analysis in tumor pathology samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
期刊最新文献
Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. Digital instrument simulator to optimize the development of hyperspectral systems: application for intraoperative functional brain mapping. Personal identification using a cross-sectional hyperspectral image of a hand. Exploring near-infrared autofluorescence properties in parathyroid tissue: an analysis of fresh and paraffin-embedded thyroidectomy specimens. Impact of signal-to-noise ratio and contrast definition on the sensitivity assessment and benchmarking of fluorescence molecular imaging systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1