骨骼肌阻力动脉张力的调节:血管反应的时空变异性。

IF 1.8 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Journal of Vascular Research Pub Date : 2024-10-03 DOI:10.1159/000541169
Brayden D Halvorson, Aaron D Ward, Donna Murrell, James C Lacefield, Robert W Wiseman, Daniel Goldman, Jefferson C Frisbee
{"title":"骨骼肌阻力动脉张力的调节:血管反应的时空变异性。","authors":"Brayden D Halvorson, Aaron D Ward, Donna Murrell, James C Lacefield, Robert W Wiseman, Daniel Goldman, Jefferson C Frisbee","doi":"10.1159/000541169","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>A full understanding of the integration of the mechanisms of vascular tone regulation requires an interrogation of the temporal behavior of arterioles across vasoactive challenges. Building on previous work, the purpose of the present study was to start to interrogate the temporal nature of arteriolar tone regulation with physiological stimuli.</p><p><strong>Methods: </strong>We determined the response rate of ex vivo proximal and in situ distal resistance arterioles when challenged by one-, two-, and three-parameter combinations of five major physiological stimuli (norepinephrine, intravascular pressure, oxygen, adenosine [metabolism], and intralumenal flow). Predictive machine learning models determined which factors were most influential in controlling the rate of arteriolar responses.</p><p><strong>Results: </strong>Results indicate that vascular response rate is dependent on the intensity of the stimulus used and can be severely hindered by altered environments, caused by application of secondary or tertiary stimuli. Advanced analytics suggest that adrenergic influences were dominant in predicting proximal arteriolar response rate compared to metabolic influences in distal arterioles.</p><p><strong>Conclusion: </strong>These data suggest that the vascular response rate to physiologic stimuli can be strongly influenced by the local environment. Translating how these effects impact vascular networks is imperative for understanding how the microcirculation appropriately perfuses tissue across conditions.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of Skeletal Muscle Resistance Arteriolar Tone: Temporal Variability in Vascular Responses.\",\"authors\":\"Brayden D Halvorson, Aaron D Ward, Donna Murrell, James C Lacefield, Robert W Wiseman, Daniel Goldman, Jefferson C Frisbee\",\"doi\":\"10.1159/000541169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>A full understanding of the integration of the mechanisms of vascular tone regulation requires an interrogation of the temporal behavior of arterioles across vasoactive challenges. Building on previous work, the purpose of the present study was to start to interrogate the temporal nature of arteriolar tone regulation with physiological stimuli.</p><p><strong>Methods: </strong>We determined the response rate of ex vivo proximal and in situ distal resistance arterioles when challenged by one-, two-, and three-parameter combinations of five major physiological stimuli (norepinephrine, intravascular pressure, oxygen, adenosine [metabolism], and intralumenal flow). Predictive machine learning models determined which factors were most influential in controlling the rate of arteriolar responses.</p><p><strong>Results: </strong>Results indicate that vascular response rate is dependent on the intensity of the stimulus used and can be severely hindered by altered environments, caused by application of secondary or tertiary stimuli. Advanced analytics suggest that adrenergic influences were dominant in predicting proximal arteriolar response rate compared to metabolic influences in distal arterioles.</p><p><strong>Conclusion: </strong>These data suggest that the vascular response rate to physiologic stimuli can be strongly influenced by the local environment. Translating how these effects impact vascular networks is imperative for understanding how the microcirculation appropriately perfuses tissue across conditions.</p>\",\"PeriodicalId\":17530,\"journal\":{\"name\":\"Journal of Vascular Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000541169\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000541169","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

摘要

简介要全面了解血管张力调节机制的整合,就必须对动脉血管在血管活性挑战下的时间行为进行研究。本研究的目的是在先前工作的基础上,开始探究生理刺激下动脉张力调节的时间性:我们测定了体内近端和原位远端阻力动脉在受到五种主要生理刺激(去甲肾上腺素、血管内压力、氧气、腺苷[代谢]和腔内流量)的单参数、双参数和三参数组合时的反应率。预测性机器学习模型确定了哪些因素对控制动脉反应速率最有影响:结果表明,血管反应速度取决于所使用刺激的强度,并且会受到因使用二级或三级刺激而导致的环境改变的严重阻碍。高级分析表明,与远端动脉血管的代谢影响相比,肾上腺素能影响在预测近端动脉血管反应速率方面占主导地位:这些数据表明,血管对生理刺激的反应速度会受到当地环境的强烈影响。要了解微循环如何在不同条件下对组织进行适当灌注,就必须了解这些影响是如何影响血管网络的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulation of Skeletal Muscle Resistance Arteriolar Tone: Temporal Variability in Vascular Responses.

Introduction: A full understanding of the integration of the mechanisms of vascular tone regulation requires an interrogation of the temporal behavior of arterioles across vasoactive challenges. Building on previous work, the purpose of the present study was to start to interrogate the temporal nature of arteriolar tone regulation with physiological stimuli.

Methods: We determined the response rate of ex vivo proximal and in situ distal resistance arterioles when challenged by one-, two-, and three-parameter combinations of five major physiological stimuli (norepinephrine, intravascular pressure, oxygen, adenosine [metabolism], and intralumenal flow). Predictive machine learning models determined which factors were most influential in controlling the rate of arteriolar responses.

Results: Results indicate that vascular response rate is dependent on the intensity of the stimulus used and can be severely hindered by altered environments, caused by application of secondary or tertiary stimuli. Advanced analytics suggest that adrenergic influences were dominant in predicting proximal arteriolar response rate compared to metabolic influences in distal arterioles.

Conclusion: These data suggest that the vascular response rate to physiologic stimuli can be strongly influenced by the local environment. Translating how these effects impact vascular networks is imperative for understanding how the microcirculation appropriately perfuses tissue across conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vascular Research
Journal of Vascular Research 医学-生理学
CiteScore
3.40
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.
期刊最新文献
Regulation of Skeletal Muscle Resistance Arteriolar Tone: Temporal Variability in Vascular Responses. Blood Urea Nitrogen to Left Ventricular Ejection Ratio as a Predictor of Short-Term Outcome in Acute Myocardial Infarction Complicated by Cardiogenic Shock. Preoperative Congestive Heart Failure Is Associated with Higher 30-Day Myocardial Infarction and Pneumonia after Endovascular Repair of Abdominal Aortic Aneurysm. Senescent CD4+ T-Cell Phenotypes and Inflammatory Milieu in the Coronary and Systemic Circulation in ST-Elevation Myocardial Infarction: An Exploratory Study. In Memoriam: A Tribute to Eva Aralikatti.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1