{"title":"利用立体光刻技术轻松制作可降解的锯齿状聚乙烯二丙烯酸酯微针。","authors":"Vedant Joshi, Nidhi Singh, Pallab Datta","doi":"10.1080/10837450.2024.2413146","DOIUrl":null,"url":null,"abstract":"<p><p>Microneedles have the potential for minimally invasive drug delivery. However, they are constrained by absence of rapid, scalable fabrication methods to produce intricate arrays and serrations for enhanced adhesion. 3D printing techniques like stereolithography (SLA) are fast, scalable modalities but SLAs require non-degradable and stiff resins. This work attempts to overcome this limitation by utilizing a poly (ethylene glycol diacrylate) (PEGDA, F3) resin and demonstrating its compatibility with a commercial SLA printer. FESEM images showed high printing efficiency of customized bioinks (F3) similar to commercial resins using SLA 3D printer. Mechanical endurance tests of whole MNA showed that MNs array printed from F3 resin (485 ± 5.73 N) required considerably less force than commercial F1 resin (880 ± 32.4 N). Penetration performance of F1 and F3 was found to be 10.8 ± 2.06 N and 0.705 ± 0.03 N. In-vitro degradation study in PBS showed that MNs fabricated from F3 resin exhibited degradation after 7 days, which was not observed with the commercial F1 resin provided by the manufacturer. The histology of porcine skin exhibited formation of triangular pores with pore length of 548 μm and efficient penetration into the deeper dermal layer. In conclusion, PEGDA can be used as for fabricating degradable, serrated solid MNs over commercial resin.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"976-986"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile fabrication of degradable, serrated polyethylene diacrylate microneedles using stereolithography.\",\"authors\":\"Vedant Joshi, Nidhi Singh, Pallab Datta\",\"doi\":\"10.1080/10837450.2024.2413146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microneedles have the potential for minimally invasive drug delivery. However, they are constrained by absence of rapid, scalable fabrication methods to produce intricate arrays and serrations for enhanced adhesion. 3D printing techniques like stereolithography (SLA) are fast, scalable modalities but SLAs require non-degradable and stiff resins. This work attempts to overcome this limitation by utilizing a poly (ethylene glycol diacrylate) (PEGDA, F3) resin and demonstrating its compatibility with a commercial SLA printer. FESEM images showed high printing efficiency of customized bioinks (F3) similar to commercial resins using SLA 3D printer. Mechanical endurance tests of whole MNA showed that MNs array printed from F3 resin (485 ± 5.73 N) required considerably less force than commercial F1 resin (880 ± 32.4 N). Penetration performance of F1 and F3 was found to be 10.8 ± 2.06 N and 0.705 ± 0.03 N. In-vitro degradation study in PBS showed that MNs fabricated from F3 resin exhibited degradation after 7 days, which was not observed with the commercial F1 resin provided by the manufacturer. The histology of porcine skin exhibited formation of triangular pores with pore length of 548 μm and efficient penetration into the deeper dermal layer. In conclusion, PEGDA can be used as for fabricating degradable, serrated solid MNs over commercial resin.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"976-986\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2413146\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2413146","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Facile fabrication of degradable, serrated polyethylene diacrylate microneedles using stereolithography.
Microneedles have the potential for minimally invasive drug delivery. However, they are constrained by absence of rapid, scalable fabrication methods to produce intricate arrays and serrations for enhanced adhesion. 3D printing techniques like stereolithography (SLA) are fast, scalable modalities but SLAs require non-degradable and stiff resins. This work attempts to overcome this limitation by utilizing a poly (ethylene glycol diacrylate) (PEGDA, F3) resin and demonstrating its compatibility with a commercial SLA printer. FESEM images showed high printing efficiency of customized bioinks (F3) similar to commercial resins using SLA 3D printer. Mechanical endurance tests of whole MNA showed that MNs array printed from F3 resin (485 ± 5.73 N) required considerably less force than commercial F1 resin (880 ± 32.4 N). Penetration performance of F1 and F3 was found to be 10.8 ± 2.06 N and 0.705 ± 0.03 N. In-vitro degradation study in PBS showed that MNs fabricated from F3 resin exhibited degradation after 7 days, which was not observed with the commercial F1 resin provided by the manufacturer. The histology of porcine skin exhibited formation of triangular pores with pore length of 548 μm and efficient penetration into the deeper dermal layer. In conclusion, PEGDA can be used as for fabricating degradable, serrated solid MNs over commercial resin.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.