Sara El Zaitouni, Abdelilah Laraqui, Meriem Ghaouti, Asmae Benzekri, Fouad Kettani, Youssra Boustany, Soukaina Benmokhtar, Hafsa Lamrani Alaoui, Hicham El Annaz, Rachid Abi, Mohamed Rida Tagajdid, Safae El Kochri, Bouchra El Mchichi, El Arbi Bouaiti, Idriss Amine Lahlou, Rabii Ameziane El Hassani, Khalid Ennibi
{"title":"通过靶向新一代测序分析摩洛哥非小细胞肺癌患者的基因谱。","authors":"Sara El Zaitouni, Abdelilah Laraqui, Meriem Ghaouti, Asmae Benzekri, Fouad Kettani, Youssra Boustany, Soukaina Benmokhtar, Hafsa Lamrani Alaoui, Hicham El Annaz, Rachid Abi, Mohamed Rida Tagajdid, Safae El Kochri, Bouchra El Mchichi, El Arbi Bouaiti, Idriss Amine Lahlou, Rabii Ameziane El Hassani, Khalid Ennibi","doi":"10.1177/15330338241288907","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We retrospectively analyzed the next-generation sequencing (NGS) results from diagnosed NSCLC patients to identify and compare genomic alterations of NSCLC between Moroccan patients and the Cancer Genome Atlas (TCGA). We also aimed to investigate the distribution and frequency of concurrent genomic alterations.</p><p><strong>Methods: </strong>From December 2022 to December 2023, a retrospective study of 76 formalin-fixed paraffin-embedded (FFPE) samples have been profiled using the Oncomine™ Precision Assay on the Ion Torrent™ Genexus™ Integrated Sequencer across the panel of 50 key genes that are applicable for the selection of targeted therapy.</p><p><strong>Results: </strong>Seventy of the 76 FFPE sequenced samples carried at least one genetic alteration in the tested genes. The study identified 234 genetic alterations in 18 genes. Targetable genetic alterations in <i>EGFR</i>, <i>KRAS</i>, <i>MET</i>, <i>BRAF</i>, <i>ALK</i>, <i>RET</i> and <i>ROS1</i> were identified in 84.3% of tumors. <i>EGFR</i> and <i>KRAS</i> mutations were frequently reported, occurring in 24.3% and 22.9% of cases, respectively. The untargetable genetic alterations were found in 74.3% of the specimens in <i>FGFR3</i>, <i>TP53</i>, <i>ERBB2</i>, <i>PIK3CA</i>, <i>CDKN2A</i>, <i>PDL1</i>, <i>FGFR1</i>, <i>PTEN</i>, <i>CHEK2</i> and <i>ERBB3</i>. There were additional uncommon/rare mutations in <i>EGFR</i>, <i>BRAF</i>, <i>RET</i> and <i>ROS1</i>. Comparing the prevalence of selected mutated genes in the NSCLC patients from the TCGA database identified substantial differences in <i>EGFR</i> (24.3%, <i>vs</i>14.97%), <i>KRAS</i> (22.9%, <i>vs</i> 25.99%), and <i>TP53</i> (34.3%, <i>vs</i> 50.94%). <i>ALK</i>, <i>ROS1</i>, and <i>RET</i> gene rearrangements were detected in 4.3% of the 70 tumors tested. The <i>ALK</i>/<i>RET</i>/<i>MET</i>/<i>ROS1</i>/<i>EML4</i> fusions were detected in 11.4% of samples. Co-alterations occurred in 67.1% of specimens. Co-occurring driver gene mutations were observed in 44.3%. TP53 mutations co-occurred driver gene mutations in 30% of tumors. Three cases (4.3%) harbored concurrent <i>FGFR3</i>, <i>TP53</i>, and <i>PIK3CA</i> alterations.</p><p><strong>Conclusion: </strong>Our results regarding the proportion of samples with actionable mutations demonstrate the value of NGS testing for NSCLC patients in a real-world clinical diagnostic setting.</p>","PeriodicalId":22203,"journal":{"name":"Technology in Cancer Research & Treatment","volume":"23 ","pages":"15330338241288907"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459666/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic Profiling of Non-Small Cell Lung Cancer in Moroccan Patients by Targeted Next-Generation Sequencing.\",\"authors\":\"Sara El Zaitouni, Abdelilah Laraqui, Meriem Ghaouti, Asmae Benzekri, Fouad Kettani, Youssra Boustany, Soukaina Benmokhtar, Hafsa Lamrani Alaoui, Hicham El Annaz, Rachid Abi, Mohamed Rida Tagajdid, Safae El Kochri, Bouchra El Mchichi, El Arbi Bouaiti, Idriss Amine Lahlou, Rabii Ameziane El Hassani, Khalid Ennibi\",\"doi\":\"10.1177/15330338241288907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>We retrospectively analyzed the next-generation sequencing (NGS) results from diagnosed NSCLC patients to identify and compare genomic alterations of NSCLC between Moroccan patients and the Cancer Genome Atlas (TCGA). We also aimed to investigate the distribution and frequency of concurrent genomic alterations.</p><p><strong>Methods: </strong>From December 2022 to December 2023, a retrospective study of 76 formalin-fixed paraffin-embedded (FFPE) samples have been profiled using the Oncomine™ Precision Assay on the Ion Torrent™ Genexus™ Integrated Sequencer across the panel of 50 key genes that are applicable for the selection of targeted therapy.</p><p><strong>Results: </strong>Seventy of the 76 FFPE sequenced samples carried at least one genetic alteration in the tested genes. The study identified 234 genetic alterations in 18 genes. Targetable genetic alterations in <i>EGFR</i>, <i>KRAS</i>, <i>MET</i>, <i>BRAF</i>, <i>ALK</i>, <i>RET</i> and <i>ROS1</i> were identified in 84.3% of tumors. <i>EGFR</i> and <i>KRAS</i> mutations were frequently reported, occurring in 24.3% and 22.9% of cases, respectively. The untargetable genetic alterations were found in 74.3% of the specimens in <i>FGFR3</i>, <i>TP53</i>, <i>ERBB2</i>, <i>PIK3CA</i>, <i>CDKN2A</i>, <i>PDL1</i>, <i>FGFR1</i>, <i>PTEN</i>, <i>CHEK2</i> and <i>ERBB3</i>. There were additional uncommon/rare mutations in <i>EGFR</i>, <i>BRAF</i>, <i>RET</i> and <i>ROS1</i>. Comparing the prevalence of selected mutated genes in the NSCLC patients from the TCGA database identified substantial differences in <i>EGFR</i> (24.3%, <i>vs</i>14.97%), <i>KRAS</i> (22.9%, <i>vs</i> 25.99%), and <i>TP53</i> (34.3%, <i>vs</i> 50.94%). <i>ALK</i>, <i>ROS1</i>, and <i>RET</i> gene rearrangements were detected in 4.3% of the 70 tumors tested. The <i>ALK</i>/<i>RET</i>/<i>MET</i>/<i>ROS1</i>/<i>EML4</i> fusions were detected in 11.4% of samples. Co-alterations occurred in 67.1% of specimens. Co-occurring driver gene mutations were observed in 44.3%. TP53 mutations co-occurred driver gene mutations in 30% of tumors. Three cases (4.3%) harbored concurrent <i>FGFR3</i>, <i>TP53</i>, and <i>PIK3CA</i> alterations.</p><p><strong>Conclusion: </strong>Our results regarding the proportion of samples with actionable mutations demonstrate the value of NGS testing for NSCLC patients in a real-world clinical diagnostic setting.</p>\",\"PeriodicalId\":22203,\"journal\":{\"name\":\"Technology in Cancer Research & Treatment\",\"volume\":\"23 \",\"pages\":\"15330338241288907\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459666/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Cancer Research & Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15330338241288907\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Cancer Research & Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15330338241288907","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Genetic Profiling of Non-Small Cell Lung Cancer in Moroccan Patients by Targeted Next-Generation Sequencing.
Objectives: We retrospectively analyzed the next-generation sequencing (NGS) results from diagnosed NSCLC patients to identify and compare genomic alterations of NSCLC between Moroccan patients and the Cancer Genome Atlas (TCGA). We also aimed to investigate the distribution and frequency of concurrent genomic alterations.
Methods: From December 2022 to December 2023, a retrospective study of 76 formalin-fixed paraffin-embedded (FFPE) samples have been profiled using the Oncomine™ Precision Assay on the Ion Torrent™ Genexus™ Integrated Sequencer across the panel of 50 key genes that are applicable for the selection of targeted therapy.
Results: Seventy of the 76 FFPE sequenced samples carried at least one genetic alteration in the tested genes. The study identified 234 genetic alterations in 18 genes. Targetable genetic alterations in EGFR, KRAS, MET, BRAF, ALK, RET and ROS1 were identified in 84.3% of tumors. EGFR and KRAS mutations were frequently reported, occurring in 24.3% and 22.9% of cases, respectively. The untargetable genetic alterations were found in 74.3% of the specimens in FGFR3, TP53, ERBB2, PIK3CA, CDKN2A, PDL1, FGFR1, PTEN, CHEK2 and ERBB3. There were additional uncommon/rare mutations in EGFR, BRAF, RET and ROS1. Comparing the prevalence of selected mutated genes in the NSCLC patients from the TCGA database identified substantial differences in EGFR (24.3%, vs14.97%), KRAS (22.9%, vs 25.99%), and TP53 (34.3%, vs 50.94%). ALK, ROS1, and RET gene rearrangements were detected in 4.3% of the 70 tumors tested. The ALK/RET/MET/ROS1/EML4 fusions were detected in 11.4% of samples. Co-alterations occurred in 67.1% of specimens. Co-occurring driver gene mutations were observed in 44.3%. TP53 mutations co-occurred driver gene mutations in 30% of tumors. Three cases (4.3%) harbored concurrent FGFR3, TP53, and PIK3CA alterations.
Conclusion: Our results regarding the proportion of samples with actionable mutations demonstrate the value of NGS testing for NSCLC patients in a real-world clinical diagnostic setting.
期刊介绍:
Technology in Cancer Research & Treatment (TCRT) is a JCR-ranked, broad-spectrum, open access, peer-reviewed publication whose aim is to provide researchers and clinicians with a platform to share and discuss developments in the prevention, diagnosis, treatment, and monitoring of cancer.