Monica A McCall, Jonathan S Watson, Mark A Sephton
{"title":"利用傅立叶变换红外光谱预测大麦秸秆生物秸秆的稳定性","authors":"Monica A McCall, Jonathan S Watson, Mark A Sephton","doi":"10.1021/acssusresmgt.4c00148","DOIUrl":null,"url":null,"abstract":"<p><p>In order to estimate the ability of biochar to sequester carbon as part of greenhouse gas removal technology, there is a need for rapid and accessible estimations of biochar stability. This study employs a novel method using Fourier transform infrared spectroscopy (FTIR) to predict common stability indicators, namely H:C and O:C molar ratios. Biochars derived from barley straw were produced at temperatures from 150 to 700 °C. The greatest compositional changes of the biochars occurred between 200 and 400 °C. All biochars produced at ≥400 °C achieved H:C < 0.7 and O:C < 0.4, indicative of biochars suitable for soil application. Regression models were built using FTIR data to predict H:C and O:C molar ratios. The H:C model produced a coefficient of determination (<i>R</i> <sup>2</sup>) of 0.99, mean absolute percentage error (MAPE) 6.86%, and root-mean-square error (RMSE) of 0.07. The O:C model achieved the same <i>R</i> <sup>2</sup> (0.99), MAPE of 9.02%, and RMSE of 0.03. Our results demonstrate that combining FTIR data with modeling is a promising rapid and accessible method for attaining biochar stability data.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 9","pages":"1975-1983"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449111/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting Stability of Barley Straw-Derived Biochars Using Fourier Transform Infrared Spectroscopy.\",\"authors\":\"Monica A McCall, Jonathan S Watson, Mark A Sephton\",\"doi\":\"10.1021/acssusresmgt.4c00148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to estimate the ability of biochar to sequester carbon as part of greenhouse gas removal technology, there is a need for rapid and accessible estimations of biochar stability. This study employs a novel method using Fourier transform infrared spectroscopy (FTIR) to predict common stability indicators, namely H:C and O:C molar ratios. Biochars derived from barley straw were produced at temperatures from 150 to 700 °C. The greatest compositional changes of the biochars occurred between 200 and 400 °C. All biochars produced at ≥400 °C achieved H:C < 0.7 and O:C < 0.4, indicative of biochars suitable for soil application. Regression models were built using FTIR data to predict H:C and O:C molar ratios. The H:C model produced a coefficient of determination (<i>R</i> <sup>2</sup>) of 0.99, mean absolute percentage error (MAPE) 6.86%, and root-mean-square error (RMSE) of 0.07. The O:C model achieved the same <i>R</i> <sup>2</sup> (0.99), MAPE of 9.02%, and RMSE of 0.03. Our results demonstrate that combining FTIR data with modeling is a promising rapid and accessible method for attaining biochar stability data.</p>\",\"PeriodicalId\":100015,\"journal\":{\"name\":\"ACS Sustainable Resource Management\",\"volume\":\"1 9\",\"pages\":\"1975-1983\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449111/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Resource Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acssusresmgt.4c00148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acssusresmgt.4c00148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Stability of Barley Straw-Derived Biochars Using Fourier Transform Infrared Spectroscopy.
In order to estimate the ability of biochar to sequester carbon as part of greenhouse gas removal technology, there is a need for rapid and accessible estimations of biochar stability. This study employs a novel method using Fourier transform infrared spectroscopy (FTIR) to predict common stability indicators, namely H:C and O:C molar ratios. Biochars derived from barley straw were produced at temperatures from 150 to 700 °C. The greatest compositional changes of the biochars occurred between 200 and 400 °C. All biochars produced at ≥400 °C achieved H:C < 0.7 and O:C < 0.4, indicative of biochars suitable for soil application. Regression models were built using FTIR data to predict H:C and O:C molar ratios. The H:C model produced a coefficient of determination (R2) of 0.99, mean absolute percentage error (MAPE) 6.86%, and root-mean-square error (RMSE) of 0.07. The O:C model achieved the same R2 (0.99), MAPE of 9.02%, and RMSE of 0.03. Our results demonstrate that combining FTIR data with modeling is a promising rapid and accessible method for attaining biochar stability data.