11C-UCB-J PET 成像与自闭症成人较低的突触密度一致

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Psychiatry Pub Date : 2024-10-04 DOI:10.1038/s41380-024-02776-2
David Matuskey, Yanghong Yang, Mika Naganawa, Sheida Koohsari, Takuya Toyonaga, Paul Gravel, Brian Pittman, Kristen Torres, Lauren Pisani, Caroline Finn, Sophie Cramer-Benjamin, Nicole Herman, Lindsey H. Rosenthal, Cassandra J. Franke, Bridget M. Walicki, Irina Esterlis, Patrick Skosnik, Rajiv Radhakrishnan, Julie M. Wolf, Nabeel Nabulsi, Jim Ropchan, Yiyun Huang, Richard E. Carson, Adam J. Naples, James C. McPartland
{"title":"11C-UCB-J PET 成像与自闭症成人较低的突触密度一致","authors":"David Matuskey, Yanghong Yang, Mika Naganawa, Sheida Koohsari, Takuya Toyonaga, Paul Gravel, Brian Pittman, Kristen Torres, Lauren Pisani, Caroline Finn, Sophie Cramer-Benjamin, Nicole Herman, Lindsey H. Rosenthal, Cassandra J. Franke, Bridget M. Walicki, Irina Esterlis, Patrick Skosnik, Rajiv Radhakrishnan, Julie M. Wolf, Nabeel Nabulsi, Jim Ropchan, Yiyun Huang, Richard E. Carson, Adam J. Naples, James C. McPartland","doi":"10.1038/s41380-024-02776-2","DOIUrl":null,"url":null,"abstract":"<p>The neural bases of autism are poorly understood at the molecular level, but evidence from animal models, genetics, post-mortem studies, and single-gene disorders implicate synaptopathology. Here, we use positron emission tomography (PET) to assess the density of synapses with synaptic vesicle glycoprotein 2A (SV2A) in autistic adults using <sup>11</sup>C-UCB-J. Twelve autistic (mean (SD) age 25 (4) years; six males), and twenty demographically matched non-autistic individuals (26 (3) years; eleven males) participated in a <sup>11</sup>C-UCB-J PET scan. Binding potential, <i>BP</i><sub>ND</sub>, was the primary outcome measure and computed with the centrum semiovale as the reference region. Partial volume correction with Iterative Yang was applied to control for possible volumetric differences. Mixed-model statistics were calculated for between-group differences. Relationships to clinical characteristics were evaluated based on clinician ratings of autistic features. Whole cortex synaptic density was 17% lower in the autism group (<i>p</i> = 0.01). All brain regions in autism had lower <sup>11</sup>C-UCB-J <i>BP</i><sub>ND</sub> compared to non-autistic participants. This effect was evident in all brain regions implicated in autism. Significant differences were observed across multiple individual regions, including the prefrontal cortex (−15%, <i>p</i> = 0.02), with differences most pronounced in gray matter (<i>p</i> &lt; 0.0001). Synaptic density was significantly associated with clinical measures across the whole cortex (<i>r</i> = 0.67, <i>p</i> = 0.02) and multiple regions (<i>r</i>s = −0.58 to −0.82, <i>p</i>s = 0.05 to &lt;0.01). The first in vivo investigation of synaptic density in autism with PET reveals pervasive and large-scale lower density in the cortex and across multiple brain areas. Synaptic density also correlated with clinical features, such that a greater number of autistic features were associated with lower synaptic density. These results indicate that brain-wide synaptic density may represent an as-yet-undiscovered molecular basis for the clinical phenotype of autism and associated pervasive alterations across a diversity of neural processes.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"41 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"11C-UCB-J PET imaging is consistent with lower synaptic density in autistic adults\",\"authors\":\"David Matuskey, Yanghong Yang, Mika Naganawa, Sheida Koohsari, Takuya Toyonaga, Paul Gravel, Brian Pittman, Kristen Torres, Lauren Pisani, Caroline Finn, Sophie Cramer-Benjamin, Nicole Herman, Lindsey H. Rosenthal, Cassandra J. Franke, Bridget M. Walicki, Irina Esterlis, Patrick Skosnik, Rajiv Radhakrishnan, Julie M. Wolf, Nabeel Nabulsi, Jim Ropchan, Yiyun Huang, Richard E. Carson, Adam J. Naples, James C. McPartland\",\"doi\":\"10.1038/s41380-024-02776-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The neural bases of autism are poorly understood at the molecular level, but evidence from animal models, genetics, post-mortem studies, and single-gene disorders implicate synaptopathology. Here, we use positron emission tomography (PET) to assess the density of synapses with synaptic vesicle glycoprotein 2A (SV2A) in autistic adults using <sup>11</sup>C-UCB-J. Twelve autistic (mean (SD) age 25 (4) years; six males), and twenty demographically matched non-autistic individuals (26 (3) years; eleven males) participated in a <sup>11</sup>C-UCB-J PET scan. Binding potential, <i>BP</i><sub>ND</sub>, was the primary outcome measure and computed with the centrum semiovale as the reference region. Partial volume correction with Iterative Yang was applied to control for possible volumetric differences. Mixed-model statistics were calculated for between-group differences. Relationships to clinical characteristics were evaluated based on clinician ratings of autistic features. Whole cortex synaptic density was 17% lower in the autism group (<i>p</i> = 0.01). All brain regions in autism had lower <sup>11</sup>C-UCB-J <i>BP</i><sub>ND</sub> compared to non-autistic participants. This effect was evident in all brain regions implicated in autism. Significant differences were observed across multiple individual regions, including the prefrontal cortex (−15%, <i>p</i> = 0.02), with differences most pronounced in gray matter (<i>p</i> &lt; 0.0001). Synaptic density was significantly associated with clinical measures across the whole cortex (<i>r</i> = 0.67, <i>p</i> = 0.02) and multiple regions (<i>r</i>s = −0.58 to −0.82, <i>p</i>s = 0.05 to &lt;0.01). The first in vivo investigation of synaptic density in autism with PET reveals pervasive and large-scale lower density in the cortex and across multiple brain areas. Synaptic density also correlated with clinical features, such that a greater number of autistic features were associated with lower synaptic density. These results indicate that brain-wide synaptic density may represent an as-yet-undiscovered molecular basis for the clinical phenotype of autism and associated pervasive alterations across a diversity of neural processes.</p>\",\"PeriodicalId\":19008,\"journal\":{\"name\":\"Molecular Psychiatry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41380-024-02776-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-024-02776-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们对自闭症的分子水平神经基础知之甚少,但来自动物模型、遗传学、尸检研究和单基因疾病的证据表明,自闭症与突触病理学有关。在这里,我们使用正电子发射断层扫描(PET)技术,利用 11C-UCB-J 评估自闭症成人突触囊泡糖蛋白 2A (SV2A) 的突触密度。12 名自闭症患者(平均 (SD) 年龄 25 (4) 岁;6 名男性)和 20 名人口统计学匹配的非自闭症患者(26 (3) 岁;11 名男性)参加了 11C-UCB-J PET 扫描。结合电位(BPND)是主要的结果测量指标,以半卵圆中心为参考区域进行计算。采用迭代杨进行部分体积校正,以控制可能存在的体积差异。对组间差异进行了混合模型统计计算。根据临床医生对自闭症特征的评分评估与临床特征的关系。自闭症组的整个皮层突触密度低 17%(p = 0.01)。与非自闭症患者相比,自闭症患者所有脑区的 11C-UCB-J BPND 均较低。这种效应在所有与自闭症有关的脑区都很明显。在包括前额叶皮质(-15%,p = 0.02)在内的多个单个区域都观察到了显著差异,其中灰质的差异最为明显(p < 0.0001)。在整个皮层(r = 0.67,p = 0.02)和多个区域(rs = -0.58 至 -0.82,ps = 0.05 至 <0.01),突触密度与临床指标有明显相关性。这是首次利用正电子发射计算机断层显像技术对自闭症患者的突触密度进行活体研究,结果显示大脑皮层和多个脑区的突触密度普遍较低,且规模较大。突触密度还与临床特征相关,自闭症特征越多,突触密度越低。这些结果表明,全脑范围的突触密度可能是自闭症临床表型以及与之相关的多种神经过程普遍改变的一个尚未发现的分子基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
11C-UCB-J PET imaging is consistent with lower synaptic density in autistic adults

The neural bases of autism are poorly understood at the molecular level, but evidence from animal models, genetics, post-mortem studies, and single-gene disorders implicate synaptopathology. Here, we use positron emission tomography (PET) to assess the density of synapses with synaptic vesicle glycoprotein 2A (SV2A) in autistic adults using 11C-UCB-J. Twelve autistic (mean (SD) age 25 (4) years; six males), and twenty demographically matched non-autistic individuals (26 (3) years; eleven males) participated in a 11C-UCB-J PET scan. Binding potential, BPND, was the primary outcome measure and computed with the centrum semiovale as the reference region. Partial volume correction with Iterative Yang was applied to control for possible volumetric differences. Mixed-model statistics were calculated for between-group differences. Relationships to clinical characteristics were evaluated based on clinician ratings of autistic features. Whole cortex synaptic density was 17% lower in the autism group (p = 0.01). All brain regions in autism had lower 11C-UCB-J BPND compared to non-autistic participants. This effect was evident in all brain regions implicated in autism. Significant differences were observed across multiple individual regions, including the prefrontal cortex (−15%, p = 0.02), with differences most pronounced in gray matter (p < 0.0001). Synaptic density was significantly associated with clinical measures across the whole cortex (r = 0.67, p = 0.02) and multiple regions (rs = −0.58 to −0.82, ps = 0.05 to <0.01). The first in vivo investigation of synaptic density in autism with PET reveals pervasive and large-scale lower density in the cortex and across multiple brain areas. Synaptic density also correlated with clinical features, such that a greater number of autistic features were associated with lower synaptic density. These results indicate that brain-wide synaptic density may represent an as-yet-undiscovered molecular basis for the clinical phenotype of autism and associated pervasive alterations across a diversity of neural processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
期刊最新文献
An integrated multi-omics analysis identifies novel regulators of circadian rhythm and sleep disruptions under unique light environment in Antarctica Enduring modulation of dorsal raphe nuclei regulates (R,S)-ketamine-mediated resilient stress-coping behavior The function of the ZFP189 transcription factor in the nucleus accumbens facilitates cocaine-specific transcriptional and behavioral adaptations Multimodal beneficial effects of BNN27, a nerve growth factor synthetic mimetic, in the 5xFAD mouse model of Alzheimer’s disease Disruption of macroscale functional network organisation in patients with frontotemporal dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1