推进灌溉管理:技术与可持续性相结合,解决全球粮食安全问题。

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Monitoring and Assessment Pub Date : 2024-10-05 DOI:10.1007/s10661-024-13145-5
Qiong Su, Vijay P Singh
{"title":"推进灌溉管理:技术与可持续性相结合,解决全球粮食安全问题。","authors":"Qiong Su, Vijay P Singh","doi":"10.1007/s10661-024-13145-5","DOIUrl":null,"url":null,"abstract":"<p><p>Irrigation management is essential for addressing global food security challenges under changing climate. This review discusses the integration of advanced irrigation technologies and their roles in enhancing water use efficiency and managing energy demands within agricultural systems. High-efficiency irrigation systems, such as drip and sprinkler systems, have significant potential to reduce water use and increase crop yields. However, their adoption varies worldwide, and the efficiency of existing irrigation practices often remains inadequate, resulting in substantial water losses due to outdated management practices. Emerging technologies and innovative irrigation strategies, including precision agriculture and advanced crop models, provide promising pathways for improving irrigation efficiency. Nonetheless, the widespread integration of these technologies is hindered by high costs, the need for technical expertise, and challenges in adapting existing agricultural systems to new methodologies. Irrigation systems can have substantial energy requirements, particularly those dependent on groundwater. The exploration of the water-environment-energy-food (WEEF) nexus illustrates the importance of a balanced approach to resource management, which is crucial for achieving sustainable agricultural outcomes. Future research should include lowering barriers to technology adoption, enhancing data utilization for precision irrigation, promoting integrated management strategies within the WEEF framework, and strengthening policy support for sustainable practices. This review proposes a multidisciplinary approach to irrigation management that includes technological innovation, strategic policy development, and global cooperation to secure sustainable agricultural practices and ensure global food supply resilience in the face of climate change.</p>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing irrigation management: integrating technology and sustainability to address global food security.\",\"authors\":\"Qiong Su, Vijay P Singh\",\"doi\":\"10.1007/s10661-024-13145-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Irrigation management is essential for addressing global food security challenges under changing climate. This review discusses the integration of advanced irrigation technologies and their roles in enhancing water use efficiency and managing energy demands within agricultural systems. High-efficiency irrigation systems, such as drip and sprinkler systems, have significant potential to reduce water use and increase crop yields. However, their adoption varies worldwide, and the efficiency of existing irrigation practices often remains inadequate, resulting in substantial water losses due to outdated management practices. Emerging technologies and innovative irrigation strategies, including precision agriculture and advanced crop models, provide promising pathways for improving irrigation efficiency. Nonetheless, the widespread integration of these technologies is hindered by high costs, the need for technical expertise, and challenges in adapting existing agricultural systems to new methodologies. Irrigation systems can have substantial energy requirements, particularly those dependent on groundwater. The exploration of the water-environment-energy-food (WEEF) nexus illustrates the importance of a balanced approach to resource management, which is crucial for achieving sustainable agricultural outcomes. Future research should include lowering barriers to technology adoption, enhancing data utilization for precision irrigation, promoting integrated management strategies within the WEEF framework, and strengthening policy support for sustainable practices. This review proposes a multidisciplinary approach to irrigation management that includes technological innovation, strategic policy development, and global cooperation to secure sustainable agricultural practices and ensure global food supply resilience in the face of climate change.</p>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10661-024-13145-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10661-024-13145-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

灌溉管理对于应对气候变化下的全球粮食安全挑战至关重要。本综述讨论了先进灌溉技术的集成及其在提高农业系统用水效率和管理能源需求方面的作用。滴灌和喷灌等高效灌溉系统在减少用水量和提高作物产量方面具有巨大潜力。然而,世界各地采用这些系统的情况各不相同,现有灌溉方法的效率往往仍然不足,过时的管理方法造成大量的水损失。新兴技术和创新灌溉策略,包括精准农业和先进作物模型,为提高灌溉效率提供了前景广阔的途径。然而,由于成本高昂、需要专业技术知识以及现有农业系统难以适应新方法,这些技术的广泛应用受到阻碍。灌溉系统可能需要大量能源,尤其是那些依赖地下水的灌溉系统。对水-环境-能源-粮食(WEEF)关系的探索说明了平衡资源管理方法的重要性,这对实现可持续农业成果至关重要。未来的研究应包括降低采用技术的障碍、提高精准灌溉的数据利用率、促进 WEEF 框架内的综合管理战略以及加强对可持续实践的政策支持。本综述提出了灌溉管理的多学科方法,包括技术创新、战略政策制定和全球合作,以确保可持续农业实践,确保全球粮食供应在气候变化面前的适应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing irrigation management: integrating technology and sustainability to address global food security.

Irrigation management is essential for addressing global food security challenges under changing climate. This review discusses the integration of advanced irrigation technologies and their roles in enhancing water use efficiency and managing energy demands within agricultural systems. High-efficiency irrigation systems, such as drip and sprinkler systems, have significant potential to reduce water use and increase crop yields. However, their adoption varies worldwide, and the efficiency of existing irrigation practices often remains inadequate, resulting in substantial water losses due to outdated management practices. Emerging technologies and innovative irrigation strategies, including precision agriculture and advanced crop models, provide promising pathways for improving irrigation efficiency. Nonetheless, the widespread integration of these technologies is hindered by high costs, the need for technical expertise, and challenges in adapting existing agricultural systems to new methodologies. Irrigation systems can have substantial energy requirements, particularly those dependent on groundwater. The exploration of the water-environment-energy-food (WEEF) nexus illustrates the importance of a balanced approach to resource management, which is crucial for achieving sustainable agricultural outcomes. Future research should include lowering barriers to technology adoption, enhancing data utilization for precision irrigation, promoting integrated management strategies within the WEEF framework, and strengthening policy support for sustainable practices. This review proposes a multidisciplinary approach to irrigation management that includes technological innovation, strategic policy development, and global cooperation to secure sustainable agricultural practices and ensure global food supply resilience in the face of climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
期刊最新文献
Impacts on the quality of surface water in a urban perimeter of the Rio Grande watershed, Brazilian Cerrado. Improving multiple stressor-response models through the inclusion of nonlinearity and interactions among stressor gradients. Soil contamination by trace elements and radioelements and related environmental risks in agricultural soils of the M'Dhilla Basin (southwestern Tunisia). Soil degradation around Orji municipal solid waste dump site: a spatial assessment. Advancing irrigation management: integrating technology and sustainability to address global food security.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1