使用 PK/PD 模型为 3 期试验中的 2 型糖尿病患者选择西格列汀剂量。

IF 4.6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Clinical Pharmacokinetics Pub Date : 2024-10-01 Epub Date: 2024-10-04 DOI:10.1007/s40262-024-01427-7
Jinmiao Lu, Jiahong Zhao, Daosheng Xie, Juping Ding, Qiang Yu, Tong Wang
{"title":"使用 PK/PD 模型为 3 期试验中的 2 型糖尿病患者选择西格列汀剂量。","authors":"Jinmiao Lu, Jiahong Zhao, Daosheng Xie, Juping Ding, Qiang Yu, Tong Wang","doi":"10.1007/s40262-024-01427-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cetagliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor developed for the treatment of patients with type 2 diabetes (T2D). Several phase 1 studies have been conducted in China. Modelling and simulation were used to obtain cetagliptin dose for phase 3 trials in T2D patients.</p><p><strong>Methods: </strong>A pharmacokinetic (PK)/pharmacodynamic (PD) model and model-based analysis of the relationship between hemoglobin A1c (HbA1c) and dosage was explored to guide dose selection of cetagliptin for phase 3 trials. The PK/PD data were derived from four phase 1 clinical studies, and sitagliptin 100 mg was employed as a positive control in studies 1, 3, and 4.</p><p><strong>Results: </strong>The PK profiles of cetagliptin were well described by a two-compartment model with first-order absorption, saturated efflux, and first-order elimination. The final PD model was a sigmoid maximum inhibitory efficacy (E<sub>max</sub>) model with the Hill coefficient. The final model accurately captured cetagliptin PK/PD, demonstrated by goodness-of-fit plots. Based on weighted average inhibition (WAI), the relationship between HbA1c and dose was well displayed. Cetagliptin 50 mg once daily or above as monotherapy or as add-on therapy appeared more effective in HbA1c reduction than sitagliptin 100 mg. Cetagliptin 50 mg or 100 mg once daily was selected as the dose for phase 3 trials of cetagliptin in T2D patients.</p><p><strong>Conclusions: </strong>The PK/PD model supports dose selection of cetagliptin for phase 3 trials. A model‑informed approach can be used to replace a dose-finding trial and accelerate cetagliptin's development.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"1463-1476"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of a PK/PD Model to Select Cetagliptin Dosages for Patients with Type 2 Diabetes in Phase 3 Trials.\",\"authors\":\"Jinmiao Lu, Jiahong Zhao, Daosheng Xie, Juping Ding, Qiang Yu, Tong Wang\",\"doi\":\"10.1007/s40262-024-01427-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cetagliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor developed for the treatment of patients with type 2 diabetes (T2D). Several phase 1 studies have been conducted in China. Modelling and simulation were used to obtain cetagliptin dose for phase 3 trials in T2D patients.</p><p><strong>Methods: </strong>A pharmacokinetic (PK)/pharmacodynamic (PD) model and model-based analysis of the relationship between hemoglobin A1c (HbA1c) and dosage was explored to guide dose selection of cetagliptin for phase 3 trials. The PK/PD data were derived from four phase 1 clinical studies, and sitagliptin 100 mg was employed as a positive control in studies 1, 3, and 4.</p><p><strong>Results: </strong>The PK profiles of cetagliptin were well described by a two-compartment model with first-order absorption, saturated efflux, and first-order elimination. The final PD model was a sigmoid maximum inhibitory efficacy (E<sub>max</sub>) model with the Hill coefficient. The final model accurately captured cetagliptin PK/PD, demonstrated by goodness-of-fit plots. Based on weighted average inhibition (WAI), the relationship between HbA1c and dose was well displayed. Cetagliptin 50 mg once daily or above as monotherapy or as add-on therapy appeared more effective in HbA1c reduction than sitagliptin 100 mg. Cetagliptin 50 mg or 100 mg once daily was selected as the dose for phase 3 trials of cetagliptin in T2D patients.</p><p><strong>Conclusions: </strong>The PK/PD model supports dose selection of cetagliptin for phase 3 trials. A model‑informed approach can be used to replace a dose-finding trial and accelerate cetagliptin's development.</p>\",\"PeriodicalId\":10405,\"journal\":{\"name\":\"Clinical Pharmacokinetics\",\"volume\":\" \",\"pages\":\"1463-1476\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pharmacokinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40262-024-01427-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40262-024-01427-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:西格列汀是一种新型二肽基肽酶-4(DPP-4)抑制剂,用于治疗 2 型糖尿病(T2D)患者。目前已在中国开展了多项 1 期研究。通过建模和模拟,得出了西格列汀在T2D患者中进行3期试验的剂量:方法:探讨了药代动力学(PK)/药效学(PD)模型,并基于模型分析了血红蛋白A1c(HbA1c)与剂量之间的关系,以指导西格列汀3期试验的剂量选择。PK/PD数据来自四项1期临床研究,西他列汀100毫克在研究1、3和4中作为阳性对照:结果:西格列汀的PK曲线用两室模型进行了很好的描述,即一阶吸收、饱和流出和一阶消除。最终的 PD 模型是一个具有希尔系数的 sigmoid 最大抑制药效(Emax)模型。拟合优度图显示,最终模型准确地反映了西格列汀的 PK/PD 过程。根据加权平均抑制率(WAI),HbA1c 和剂量之间的关系得到了很好的显示。与西他列汀 100 毫克相比,西他列汀 50 毫克,每日一次或更高剂量作为单药或附加疗法似乎更能有效降低 HbA1c。西格列汀50毫克或100毫克,每日一次,被选为西格列汀治疗T2D患者3期试验的剂量:PK/PD模型支持西格列汀3期试验的剂量选择。结论:PK/PD模型支持西格列汀在3期试验中的剂量选择,可以用模型为依据的方法取代剂量探索试验,加速西格列汀的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of a PK/PD Model to Select Cetagliptin Dosages for Patients with Type 2 Diabetes in Phase 3 Trials.

Background: Cetagliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor developed for the treatment of patients with type 2 diabetes (T2D). Several phase 1 studies have been conducted in China. Modelling and simulation were used to obtain cetagliptin dose for phase 3 trials in T2D patients.

Methods: A pharmacokinetic (PK)/pharmacodynamic (PD) model and model-based analysis of the relationship between hemoglobin A1c (HbA1c) and dosage was explored to guide dose selection of cetagliptin for phase 3 trials. The PK/PD data were derived from four phase 1 clinical studies, and sitagliptin 100 mg was employed as a positive control in studies 1, 3, and 4.

Results: The PK profiles of cetagliptin were well described by a two-compartment model with first-order absorption, saturated efflux, and first-order elimination. The final PD model was a sigmoid maximum inhibitory efficacy (Emax) model with the Hill coefficient. The final model accurately captured cetagliptin PK/PD, demonstrated by goodness-of-fit plots. Based on weighted average inhibition (WAI), the relationship between HbA1c and dose was well displayed. Cetagliptin 50 mg once daily or above as monotherapy or as add-on therapy appeared more effective in HbA1c reduction than sitagliptin 100 mg. Cetagliptin 50 mg or 100 mg once daily was selected as the dose for phase 3 trials of cetagliptin in T2D patients.

Conclusions: The PK/PD model supports dose selection of cetagliptin for phase 3 trials. A model‑informed approach can be used to replace a dose-finding trial and accelerate cetagliptin's development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
4.40%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Clinical Pharmacokinetics promotes the continuing development of clinical pharmacokinetics and pharmacodynamics for the improvement of drug therapy, and for furthering postgraduate education in clinical pharmacology and therapeutics. Pharmacokinetics, the study of drug disposition in the body, is an integral part of drug development and rational use. Knowledge and application of pharmacokinetic principles leads to accelerated drug development, cost effective drug use and a reduced frequency of adverse effects and drug interactions.
期刊最新文献
SGLT2 Inhibitors in Patients with Heart Failure: A Model-Based Meta-Analysis. Population Pharmacokinetics of Intravenous Paracetamol and Its Metabolites in Extreme Preterm Neonates in the Context of Patent Ductus Arteriosus Treatment. Population Pharmacokinetics of Ensitrelvir in Healthy Participants and Participants with SARS-CoV-2 Infection in the SCORPIO-SR Study. Clinical Pharmacokinetics and Safety of Remdesivir in Phase I Participants with Varying Degrees of Renal Impairment. A Population Pharmacokinetic Study to Evaluate Doxorubicin Exposure Across All Age Groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1