用于生成咬合冠深度图像的两阶段深度学习框架。

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-10-03 DOI:10.1016/j.compbiomed.2024.109220
Junghyun Roh, Junhwi Kim, Jimin Lee
{"title":"用于生成咬合冠深度图像的两阶段深度学习框架。","authors":"Junghyun Roh, Junhwi Kim, Jimin Lee","doi":"10.1016/j.compbiomed.2024.109220","DOIUrl":null,"url":null,"abstract":"<p><p>The generation of depth images of occlusal dental crowns is complicated by the need for customization in each case. To decrease the workload of skilled dental technicians, various computer vision models have been used to generate realistic occlusal crown depth images with definite crown surface structures that can ultimately be reconstructed to three-dimensional crowns and directly used in patient treatment. However, it has remained difficult to generate images of the structure of dental crowns in a fluid position using computer vision models. In this paper, we propose a two-stage model for generating depth images of occlusal crowns in diverse positions. The model is divided into two parts: segmentation and inpainting to obtain both shape and surface structure accuracy. The segmentation network focuses on the position and size of the crowns, which allows the model to adapt to diverse targets. The inpainting network based on a GAN generates curved structures of the crown surfaces based on the target jaw image and a binary mask made by the segmentation network. The performance of the model is evaluated via quantitative metrics for the area detection and pixel-value metrics. Compared to the baseline model, the proposed method reduced the MSE score from 0.007001 to 0.002618 and increased DICE score from 0.9333 to 0.9648. It indicates that the model showed better performance in terms of the binary mask from the addition of the segmentation network and the internal structure through the use of inpainting networks. Also, the results demonstrated an improved ability of the proposed model to restore realistic details compared to other models.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-stage deep learning framework for occlusal crown depth image generation.\",\"authors\":\"Junghyun Roh, Junhwi Kim, Jimin Lee\",\"doi\":\"10.1016/j.compbiomed.2024.109220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The generation of depth images of occlusal dental crowns is complicated by the need for customization in each case. To decrease the workload of skilled dental technicians, various computer vision models have been used to generate realistic occlusal crown depth images with definite crown surface structures that can ultimately be reconstructed to three-dimensional crowns and directly used in patient treatment. However, it has remained difficult to generate images of the structure of dental crowns in a fluid position using computer vision models. In this paper, we propose a two-stage model for generating depth images of occlusal crowns in diverse positions. The model is divided into two parts: segmentation and inpainting to obtain both shape and surface structure accuracy. The segmentation network focuses on the position and size of the crowns, which allows the model to adapt to diverse targets. The inpainting network based on a GAN generates curved structures of the crown surfaces based on the target jaw image and a binary mask made by the segmentation network. The performance of the model is evaluated via quantitative metrics for the area detection and pixel-value metrics. Compared to the baseline model, the proposed method reduced the MSE score from 0.007001 to 0.002618 and increased DICE score from 0.9333 to 0.9648. It indicates that the model showed better performance in terms of the binary mask from the addition of the segmentation network and the internal structure through the use of inpainting networks. Also, the results demonstrated an improved ability of the proposed model to restore realistic details compared to other models.</p>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiomed.2024.109220\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

咬合牙冠深度图像的生成因每个病例都需要定制而变得复杂。为了减少熟练牙科技师的工作量,人们使用各种计算机视觉模型来生成具有明确牙冠表面结构的逼真咬合深度图像,这些图像最终可以重建为三维牙冠,并直接用于患者治疗。然而,利用计算机视觉模型生成流体位置的牙冠结构图像仍然很困难。在本文中,我们提出了一种分两个阶段生成不同位置咬合牙冠深度图像的模型。该模型分为两个部分:分割和内绘,以获得形状和表面结构的准确性。分割网络侧重于牙冠的位置和大小,使模型能够适应不同的目标。基于 GAN 的内绘网络根据目标颌骨图像和分割网络生成的二进制掩膜生成牙冠表面的曲面结构。该模型的性能通过区域检测和像素值指标进行量化评估。与基线模型相比,拟议方法的 MSE 分数从 0.007001 降至 0.002618,DICE 分数从 0.9333 升至 0.9648。这表明,该模型在二进制掩码方面表现得更好,因为增加了分割网络,而在内部结构方面则使用了内绘网络。此外,结果还表明,与其他模型相比,所提出的模型在还原真实细节方面的能力有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-stage deep learning framework for occlusal crown depth image generation.

The generation of depth images of occlusal dental crowns is complicated by the need for customization in each case. To decrease the workload of skilled dental technicians, various computer vision models have been used to generate realistic occlusal crown depth images with definite crown surface structures that can ultimately be reconstructed to three-dimensional crowns and directly used in patient treatment. However, it has remained difficult to generate images of the structure of dental crowns in a fluid position using computer vision models. In this paper, we propose a two-stage model for generating depth images of occlusal crowns in diverse positions. The model is divided into two parts: segmentation and inpainting to obtain both shape and surface structure accuracy. The segmentation network focuses on the position and size of the crowns, which allows the model to adapt to diverse targets. The inpainting network based on a GAN generates curved structures of the crown surfaces based on the target jaw image and a binary mask made by the segmentation network. The performance of the model is evaluated via quantitative metrics for the area detection and pixel-value metrics. Compared to the baseline model, the proposed method reduced the MSE score from 0.007001 to 0.002618 and increased DICE score from 0.9333 to 0.9648. It indicates that the model showed better performance in terms of the binary mask from the addition of the segmentation network and the internal structure through the use of inpainting networks. Also, the results demonstrated an improved ability of the proposed model to restore realistic details compared to other models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Lightweight medical image segmentation network with multi-scale feature-guided fusion. Shuffled ECA-Net for stress detection from multimodal wearable sensor data. Stacking based ensemble learning framework for identification of nitrotyrosine sites. Two-stage deep learning framework for occlusal crown depth image generation. A joint analysis proposal of nonlinear longitudinal and time-to-event right-, interval-censored data for modeling pregnancy miscarriage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1