使用离散元素法为连续直接压缩过程开发高保真数字孪生模型。第 1 部分:校准工作流程。校准工作流程。

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2024-10-02 DOI:10.1016/j.ijpharm.2024.124796
{"title":"使用离散元素法为连续直接压缩过程开发高保真数字孪生模型。第 1 部分:校准工作流程。校准工作流程。","authors":"","doi":"10.1016/j.ijpharm.2024.124796","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a high-fidelity digital twin was developed to support the design and testing of control strategies for drug product manufacturing via direct compression. The high-fidelity digital twin platform was based on typical pharmaceutical equipment, materials, and direct compression continuous processes. The paper describes in detail the material characterization, the Discrete Element Method (DEM) model and the DEM model parameter calibration approach and provides a comparison of the system’s response to the experimental results for stepwise changes in the API concentration at the mixer inlet. A calibration method for a cohesive DEM contact model parameter estimation was introduced. To assure a correct prediction for a wide range of processes, the calibration approach contained four characterization experiments using different stress states and different measurement principles, namely the bulk density test, compression with elastic recovery, the shear cell, and the rotating drum. To demonstrate the sensitivity of the DEM contact parameters to the process response, two powder characterization data sets with different powder flowability were applied. The results showed that the calibration method could differentiate between the different material batches of the same blend and that small-scale material characterization tests could be used to predict the residence time distribution in a continuous manufacturing process.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a high-fidelity digital twin using the discrete element method for a continuous direct compression process. Part 1. Calibration workflow\",\"authors\":\"\",\"doi\":\"10.1016/j.ijpharm.2024.124796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a high-fidelity digital twin was developed to support the design and testing of control strategies for drug product manufacturing via direct compression. The high-fidelity digital twin platform was based on typical pharmaceutical equipment, materials, and direct compression continuous processes. The paper describes in detail the material characterization, the Discrete Element Method (DEM) model and the DEM model parameter calibration approach and provides a comparison of the system’s response to the experimental results for stepwise changes in the API concentration at the mixer inlet. A calibration method for a cohesive DEM contact model parameter estimation was introduced. To assure a correct prediction for a wide range of processes, the calibration approach contained four characterization experiments using different stress states and different measurement principles, namely the bulk density test, compression with elastic recovery, the shear cell, and the rotating drum. To demonstrate the sensitivity of the DEM contact parameters to the process response, two powder characterization data sets with different powder flowability were applied. The results showed that the calibration method could differentiate between the different material batches of the same blend and that small-scale material characterization tests could be used to predict the residence time distribution in a continuous manufacturing process.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324010305\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324010305","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,开发了一个高保真数字孪生系统,以支持设计和测试通过直接压缩生产药品的控制策略。高保真数字孪生平台基于典型的制药设备、材料和直接压缩连续工艺。论文详细描述了材料表征、离散元素法(DEM)模型和 DEM 模型参数校准方法,并比较了系统对混合器入口处原料药浓度逐步变化的响应与实验结果。介绍了内聚 DEM 接触模型参数估计的校准方法。为确保对各种过程进行正确预测,校准方法包括使用不同应力状态和不同测量原理的四种特性实验,即松散密度测试、弹性恢复压缩、剪切池和旋转滚筒。为了证明 DEM 接触参数对过程响应的敏感性,应用了两组具有不同粉末流动性的粉末表征数据。结果表明,校准方法可以区分同一混合物的不同材料批次,小规模材料表征测试可用于预测连续生产过程中的停留时间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a high-fidelity digital twin using the discrete element method for a continuous direct compression process. Part 1. Calibration workflow
In this work, a high-fidelity digital twin was developed to support the design and testing of control strategies for drug product manufacturing via direct compression. The high-fidelity digital twin platform was based on typical pharmaceutical equipment, materials, and direct compression continuous processes. The paper describes in detail the material characterization, the Discrete Element Method (DEM) model and the DEM model parameter calibration approach and provides a comparison of the system’s response to the experimental results for stepwise changes in the API concentration at the mixer inlet. A calibration method for a cohesive DEM contact model parameter estimation was introduced. To assure a correct prediction for a wide range of processes, the calibration approach contained four characterization experiments using different stress states and different measurement principles, namely the bulk density test, compression with elastic recovery, the shear cell, and the rotating drum. To demonstrate the sensitivity of the DEM contact parameters to the process response, two powder characterization data sets with different powder flowability were applied. The results showed that the calibration method could differentiate between the different material batches of the same blend and that small-scale material characterization tests could be used to predict the residence time distribution in a continuous manufacturing process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Chitosan gel loaded with carbon dots and mesoporous hydroxyapatite nanoparticles as a topical formulation for skin regeneration: An animal study Quality by design-based optimization of teriflunomide and quercetin combinational topical transferosomes for the treatment of rheumatoid arthritis Nasal administration of Xingnaojing biomimetic nanoparticles for the treatment of ischemic stroke Silk fibroin/chitosan thiourea hydrogel scaffold with vancomycin and quercetin-loaded PLGA nanoparticles for treating chronic MRSA osteomyelitis in rats Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1