{"title":"4-溴联苯醚(BDE-3)对斑马鱼胚胎-幼鱼抗氧化酶、细胞活力、组织学和生物大分子的毒性影响","authors":"Shiv Kumar, Pooja Chadha","doi":"10.1002/jat.4708","DOIUrl":null,"url":null,"abstract":"<p><p>Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that are being used widely in industrial and consumers products such as plastics, electronics, furniture, textiles and so forth. They can undergo debromination process to form less brominated diphenyl ethers, which are bioaccumulative, more volatile and more toxic in nature. The current study was conducted to reveal the biochemical, apoptotic, histopathological, ultrastructural and biomolecular (ATR-FTIR) toxicity of 4-bromodiphenyl ether (BDE-3) in zebrafish larvae. After the 96-h LC<sub>50</sub> determination, the zebrafish embryos were exposed to sublethal concentrations of BDE-3, that is, 0.79 and 1.59 mg/L. The MDA content was found to be significantly increased in BDE-3 exposed larvae whereas the FRAP activity was found to be decreased. The catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) activity were observed to be significantly increased, and a decreased superoxide dismutase (SOD) activity was reported after the BDE-3 exposure in zebrafish larvae. The cell viability was reported to be decreased in zebrafish larvae after BDE-3 exposure. Histopathological and ultrastructural alterations were also observed in the BDE-3 exposed zebrafish larvae. The changes in the biomolecules such as DNA and protein were also revealed via ATR-FTIR analysis. The present investigation will help to understand the toxic nature of less brominated diphenyl ethers and could be utilised to assess environmental risk.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxic Effects of 4-Bromodiphenyl Ether (BDE-3) on Antioxidant Enzymes, Cell Viability, Histology and Biomolecules in Zebrafish Embryo-Larvae.\",\"authors\":\"Shiv Kumar, Pooja Chadha\",\"doi\":\"10.1002/jat.4708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that are being used widely in industrial and consumers products such as plastics, electronics, furniture, textiles and so forth. They can undergo debromination process to form less brominated diphenyl ethers, which are bioaccumulative, more volatile and more toxic in nature. The current study was conducted to reveal the biochemical, apoptotic, histopathological, ultrastructural and biomolecular (ATR-FTIR) toxicity of 4-bromodiphenyl ether (BDE-3) in zebrafish larvae. After the 96-h LC<sub>50</sub> determination, the zebrafish embryos were exposed to sublethal concentrations of BDE-3, that is, 0.79 and 1.59 mg/L. The MDA content was found to be significantly increased in BDE-3 exposed larvae whereas the FRAP activity was found to be decreased. The catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) activity were observed to be significantly increased, and a decreased superoxide dismutase (SOD) activity was reported after the BDE-3 exposure in zebrafish larvae. The cell viability was reported to be decreased in zebrafish larvae after BDE-3 exposure. Histopathological and ultrastructural alterations were also observed in the BDE-3 exposed zebrafish larvae. The changes in the biomolecules such as DNA and protein were also revealed via ATR-FTIR analysis. The present investigation will help to understand the toxic nature of less brominated diphenyl ethers and could be utilised to assess environmental risk.</p>\",\"PeriodicalId\":15242,\"journal\":{\"name\":\"Journal of Applied Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jat.4708\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4708","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Toxic Effects of 4-Bromodiphenyl Ether (BDE-3) on Antioxidant Enzymes, Cell Viability, Histology and Biomolecules in Zebrafish Embryo-Larvae.
Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that are being used widely in industrial and consumers products such as plastics, electronics, furniture, textiles and so forth. They can undergo debromination process to form less brominated diphenyl ethers, which are bioaccumulative, more volatile and more toxic in nature. The current study was conducted to reveal the biochemical, apoptotic, histopathological, ultrastructural and biomolecular (ATR-FTIR) toxicity of 4-bromodiphenyl ether (BDE-3) in zebrafish larvae. After the 96-h LC50 determination, the zebrafish embryos were exposed to sublethal concentrations of BDE-3, that is, 0.79 and 1.59 mg/L. The MDA content was found to be significantly increased in BDE-3 exposed larvae whereas the FRAP activity was found to be decreased. The catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) activity were observed to be significantly increased, and a decreased superoxide dismutase (SOD) activity was reported after the BDE-3 exposure in zebrafish larvae. The cell viability was reported to be decreased in zebrafish larvae after BDE-3 exposure. Histopathological and ultrastructural alterations were also observed in the BDE-3 exposed zebrafish larvae. The changes in the biomolecules such as DNA and protein were also revealed via ATR-FTIR analysis. The present investigation will help to understand the toxic nature of less brominated diphenyl ethers and could be utilised to assess environmental risk.
期刊介绍:
Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.