4-溴联苯醚(BDE-3)对斑马鱼胚胎-幼鱼抗氧化酶、细胞活力、组织学和生物大分子的毒性影响

IF 2.7 4区 医学 Q3 TOXICOLOGY Journal of Applied Toxicology Pub Date : 2024-10-04 DOI:10.1002/jat.4708
Shiv Kumar, Pooja Chadha
{"title":"4-溴联苯醚(BDE-3)对斑马鱼胚胎-幼鱼抗氧化酶、细胞活力、组织学和生物大分子的毒性影响","authors":"Shiv Kumar, Pooja Chadha","doi":"10.1002/jat.4708","DOIUrl":null,"url":null,"abstract":"<p><p>Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that are being used widely in industrial and consumers products such as plastics, electronics, furniture, textiles and so forth. They can undergo debromination process to form less brominated diphenyl ethers, which are bioaccumulative, more volatile and more toxic in nature. The current study was conducted to reveal the biochemical, apoptotic, histopathological, ultrastructural and biomolecular (ATR-FTIR) toxicity of 4-bromodiphenyl ether (BDE-3) in zebrafish larvae. After the 96-h LC<sub>50</sub> determination, the zebrafish embryos were exposed to sublethal concentrations of BDE-3, that is, 0.79 and 1.59 mg/L. The MDA content was found to be significantly increased in BDE-3 exposed larvae whereas the FRAP activity was found to be decreased. The catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) activity were observed to be significantly increased, and a decreased superoxide dismutase (SOD) activity was reported after the BDE-3 exposure in zebrafish larvae. The cell viability was reported to be decreased in zebrafish larvae after BDE-3 exposure. Histopathological and ultrastructural alterations were also observed in the BDE-3 exposed zebrafish larvae. The changes in the biomolecules such as DNA and protein were also revealed via ATR-FTIR analysis. The present investigation will help to understand the toxic nature of less brominated diphenyl ethers and could be utilised to assess environmental risk.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxic Effects of 4-Bromodiphenyl Ether (BDE-3) on Antioxidant Enzymes, Cell Viability, Histology and Biomolecules in Zebrafish Embryo-Larvae.\",\"authors\":\"Shiv Kumar, Pooja Chadha\",\"doi\":\"10.1002/jat.4708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that are being used widely in industrial and consumers products such as plastics, electronics, furniture, textiles and so forth. They can undergo debromination process to form less brominated diphenyl ethers, which are bioaccumulative, more volatile and more toxic in nature. The current study was conducted to reveal the biochemical, apoptotic, histopathological, ultrastructural and biomolecular (ATR-FTIR) toxicity of 4-bromodiphenyl ether (BDE-3) in zebrafish larvae. After the 96-h LC<sub>50</sub> determination, the zebrafish embryos were exposed to sublethal concentrations of BDE-3, that is, 0.79 and 1.59 mg/L. The MDA content was found to be significantly increased in BDE-3 exposed larvae whereas the FRAP activity was found to be decreased. The catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) activity were observed to be significantly increased, and a decreased superoxide dismutase (SOD) activity was reported after the BDE-3 exposure in zebrafish larvae. The cell viability was reported to be decreased in zebrafish larvae after BDE-3 exposure. Histopathological and ultrastructural alterations were also observed in the BDE-3 exposed zebrafish larvae. The changes in the biomolecules such as DNA and protein were also revealed via ATR-FTIR analysis. The present investigation will help to understand the toxic nature of less brominated diphenyl ethers and could be utilised to assess environmental risk.</p>\",\"PeriodicalId\":15242,\"journal\":{\"name\":\"Journal of Applied Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jat.4708\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4708","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多溴联苯醚(PBDEs)是一类阻燃剂,被广泛用于塑料、电子产品、家具、纺织品等工业和消费品中。它们在脱溴过程中会生成溴化程度较低的二苯醚,而溴化程度较低的二苯醚具有生物蓄积性,挥发性更强,毒性更大。本研究旨在揭示 4-溴二苯醚(BDE-3)对斑马鱼幼虫的生化、凋亡、组织病理学、超微结构和生物分子(ATR-FTIR)毒性。在对斑马鱼胚胎进行 96 小时半致死浓度测定后,又将其暴露于亚致死浓度的 BDE-3,即 0.79 和 1.59 毫克/升。发现暴露于 BDE-3 的幼体中 MDA 含量显著增加,而 FRAP 活性降低。斑马鱼幼体接触 BDE-3 后,过氧化氢酶 (CAT)、谷胱甘肽-S-转移酶 (GST) 和乙酰胆碱酯酶 (AChE) 的活性明显增加,超氧化物歧化酶 (SOD) 的活性降低。据报道,接触 BDE-3 后,斑马鱼幼体的细胞活力下降。在暴露于 BDE-3 的斑马鱼幼体中还观察到组织病理学和超微结构的改变。通过 ATR-FTIR 分析还发现了 DNA 和蛋白质等生物大分子的变化。本研究有助于了解溴化二苯醚的毒性,并可用于评估环境风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toxic Effects of 4-Bromodiphenyl Ether (BDE-3) on Antioxidant Enzymes, Cell Viability, Histology and Biomolecules in Zebrafish Embryo-Larvae.

Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that are being used widely in industrial and consumers products such as plastics, electronics, furniture, textiles and so forth. They can undergo debromination process to form less brominated diphenyl ethers, which are bioaccumulative, more volatile and more toxic in nature. The current study was conducted to reveal the biochemical, apoptotic, histopathological, ultrastructural and biomolecular (ATR-FTIR) toxicity of 4-bromodiphenyl ether (BDE-3) in zebrafish larvae. After the 96-h LC50 determination, the zebrafish embryos were exposed to sublethal concentrations of BDE-3, that is, 0.79 and 1.59 mg/L. The MDA content was found to be significantly increased in BDE-3 exposed larvae whereas the FRAP activity was found to be decreased. The catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) activity were observed to be significantly increased, and a decreased superoxide dismutase (SOD) activity was reported after the BDE-3 exposure in zebrafish larvae. The cell viability was reported to be decreased in zebrafish larvae after BDE-3 exposure. Histopathological and ultrastructural alterations were also observed in the BDE-3 exposed zebrafish larvae. The changes in the biomolecules such as DNA and protein were also revealed via ATR-FTIR analysis. The present investigation will help to understand the toxic nature of less brominated diphenyl ethers and could be utilised to assess environmental risk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
6.10%
发文量
145
审稿时长
1 months
期刊介绍: Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.
期刊最新文献
Behavioural, Teratogenic and Genotoxic Effects of Antibacterial Compounds, Triclocarban and Triclosan, in Hydra vulgaris. Ergothioneine Ameliorates Liver Fibrosis by Inhibiting Glycerophospholipids Metabolism and TGF-β/Smads Signaling Pathway: Based on Metabonomics and Network Pharmacology. A Rapid Quantitative Assessment Method for Liver Damage Effects of Compounds Based on Zebrafish Liver Partition Area Ratio. Association of Stress Defense System With Fine Particulate Matter Exposure: Mechanism Analysis and Application Prospects. The Impact of NO2 on Epithelial Barrier Integrity of a Primary Cell-Based Air-Liquid Interface Model of the Nasal Respiratory Epithelium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1