基于机器学习的 Celeration 建模用于预测闯红灯行为

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2024-09-25 DOI:10.1109/OJITS.2024.3467222
Mahmoud Masoud
{"title":"基于机器学习的 Celeration 建模用于预测闯红灯行为","authors":"Mahmoud Masoud","doi":"10.1109/OJITS.2024.3467222","DOIUrl":null,"url":null,"abstract":"This research examines the intricate correlation between speed variation (celeration), a metric of driver behavior associated with vehicle control, and occurrences of running red lights. The study is based on a thorough analysis of a large dataset that includes a variety of parameters, such as exceeding speed limits, driver age, passenger count, weather, road condition, and temporal factors. Using cutting-edge machine learning methods like AdaBoost and Bagging, predictive models for red-light violations are painstakingly built, achieving remarkable validation accuracies of 90.4% and 90.1%, respectively. The study acknowledges the dataset’s limitations in capturing real-world traffic complexities while focusing on the effectiveness and trade-offs inherent in these methodologies. This emphasizes how important it is to have synchronized and thorough data sources to guarantee accurate representation. The research field is enhancing predictive modeling techniques and improving transportation safety by connecting celebration, speed variation patterns over time, with instances of red-light violations.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"608-616"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10693532","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Modeling of Celeration for Predicting Red-Light Violations\",\"authors\":\"Mahmoud Masoud\",\"doi\":\"10.1109/OJITS.2024.3467222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research examines the intricate correlation between speed variation (celeration), a metric of driver behavior associated with vehicle control, and occurrences of running red lights. The study is based on a thorough analysis of a large dataset that includes a variety of parameters, such as exceeding speed limits, driver age, passenger count, weather, road condition, and temporal factors. Using cutting-edge machine learning methods like AdaBoost and Bagging, predictive models for red-light violations are painstakingly built, achieving remarkable validation accuracies of 90.4% and 90.1%, respectively. The study acknowledges the dataset’s limitations in capturing real-world traffic complexities while focusing on the effectiveness and trade-offs inherent in these methodologies. This emphasizes how important it is to have synchronized and thorough data sources to guarantee accurate representation. The research field is enhancing predictive modeling techniques and improving transportation safety by connecting celebration, speed variation patterns over time, with instances of red-light violations.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"5 \",\"pages\":\"608-616\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10693532\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693532/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10693532/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了速度变化(celeration)与闯红灯之间错综复杂的相关性,速度变化是与车辆控制相关的驾驶员行为指标。该研究基于对大型数据集的全面分析,其中包括各种参数,如超速限制、驾驶员年龄、乘客人数、天气、路况和时间因素。利用 AdaBoost 和 Bagging 等尖端机器学习方法,经过艰苦努力,建立了闯红灯预测模型,验证准确率分别达到 90.4% 和 90.1%。该研究承认数据集在捕捉真实世界交通复杂性方面存在局限性,同时重点关注了这些方法固有的有效性和权衡。这强调了拥有同步和全面的数据源以保证准确表达的重要性。该研究领域正在通过将庆祝活动、速度随时间的变化规律与闯红灯事件联系起来,加强预测建模技术并改善交通安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning-Based Modeling of Celeration for Predicting Red-Light Violations
This research examines the intricate correlation between speed variation (celeration), a metric of driver behavior associated with vehicle control, and occurrences of running red lights. The study is based on a thorough analysis of a large dataset that includes a variety of parameters, such as exceeding speed limits, driver age, passenger count, weather, road condition, and temporal factors. Using cutting-edge machine learning methods like AdaBoost and Bagging, predictive models for red-light violations are painstakingly built, achieving remarkable validation accuracies of 90.4% and 90.1%, respectively. The study acknowledges the dataset’s limitations in capturing real-world traffic complexities while focusing on the effectiveness and trade-offs inherent in these methodologies. This emphasizes how important it is to have synchronized and thorough data sources to guarantee accurate representation. The research field is enhancing predictive modeling techniques and improving transportation safety by connecting celebration, speed variation patterns over time, with instances of red-light violations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Predictor-Based CACC Design for Heterogeneous Vehicles With Distinct Input Delays NLOS Dies Twice: Challenges and Solutions of V2X for Cooperative Perception Control Allocation Approach Using Differential Steering to Compensate for Steering Actuator Failure Path Planning Optimization of Smart Vehicle With Fast Converging Distance-Dependent PSO Algorithm An Extensible Python Open-Source Simulation Platform for Developing and Benchmarking Bus Holding Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1