Ricardo C. Camara de M. Santos;Mateus Coelho;Ricardo Oliveira
{"title":"在边缘设备上使用 YOLOv7 进行实时物体检测性能分析","authors":"Ricardo C. Camara de M. Santos;Mateus Coelho;Ricardo Oliveira","doi":"10.1109/TLA.2024.10705971","DOIUrl":null,"url":null,"abstract":"Real-time object detection in images is one of the most important areas in computer vision and finds applications in several fields, such as security systems, protection, independent vehicles, and robotics. Many of these applications need to use edge hardware platforms, and it is vital to know the performance of the object detector on these hardware platforms before developing the system. Therefore, in this work, we executed performance benchmark tests of the YOLOv7-tiny model for real-time object detection using a camera and three embedded hardware platforms: Raspberry Pi 4B, Jetson Nano, and Jetson Xavier NX. We tested and analyzed the NVIDIA platforms and their different power modes. The Raspberry Pi 4B achieved an average of 0.9 FPS. The Jetson Xavier NX achieved 30 FPS, the maximum possible FPS rate, in three power modes. In the tests, it was possible to notice that the maximum CPU clock of the Jetson Xavier NX impacts the FPS rate more than the GPU clock itself. The Jetson Nano achieved 7.4 and 5.2 FPS in its two power consumption modes.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"22 10","pages":"799-805"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705971","citationCount":"0","resultStr":"{\"title\":\"Real-time Object Detection Performance Analysis Using YOLOv7 on Edge Devices\",\"authors\":\"Ricardo C. Camara de M. Santos;Mateus Coelho;Ricardo Oliveira\",\"doi\":\"10.1109/TLA.2024.10705971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time object detection in images is one of the most important areas in computer vision and finds applications in several fields, such as security systems, protection, independent vehicles, and robotics. Many of these applications need to use edge hardware platforms, and it is vital to know the performance of the object detector on these hardware platforms before developing the system. Therefore, in this work, we executed performance benchmark tests of the YOLOv7-tiny model for real-time object detection using a camera and three embedded hardware platforms: Raspberry Pi 4B, Jetson Nano, and Jetson Xavier NX. We tested and analyzed the NVIDIA platforms and their different power modes. The Raspberry Pi 4B achieved an average of 0.9 FPS. The Jetson Xavier NX achieved 30 FPS, the maximum possible FPS rate, in three power modes. In the tests, it was possible to notice that the maximum CPU clock of the Jetson Xavier NX impacts the FPS rate more than the GPU clock itself. The Jetson Nano achieved 7.4 and 5.2 FPS in its two power consumption modes.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":\"22 10\",\"pages\":\"799-805\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705971\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705971/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705971/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Real-time Object Detection Performance Analysis Using YOLOv7 on Edge Devices
Real-time object detection in images is one of the most important areas in computer vision and finds applications in several fields, such as security systems, protection, independent vehicles, and robotics. Many of these applications need to use edge hardware platforms, and it is vital to know the performance of the object detector on these hardware platforms before developing the system. Therefore, in this work, we executed performance benchmark tests of the YOLOv7-tiny model for real-time object detection using a camera and three embedded hardware platforms: Raspberry Pi 4B, Jetson Nano, and Jetson Xavier NX. We tested and analyzed the NVIDIA platforms and their different power modes. The Raspberry Pi 4B achieved an average of 0.9 FPS. The Jetson Xavier NX achieved 30 FPS, the maximum possible FPS rate, in three power modes. In the tests, it was possible to notice that the maximum CPU clock of the Jetson Xavier NX impacts the FPS rate more than the GPU clock itself. The Jetson Nano achieved 7.4 and 5.2 FPS in its two power consumption modes.
期刊介绍:
IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.