{"title":"无线传感器网络非平滑空间过滤问题的分布式自适应算法","authors":"Charles Hovine;Alexander Bertrand","doi":"10.1109/TSP.2024.3474168","DOIUrl":null,"url":null,"abstract":"A wireless sensor network often relies on a fusion center to process the data collected by each of its sensing nodes. Such an approach relies on the continuous transmission of raw data to the fusion center, which typically has a major impact on the sensors’ battery life. To address this issue in the particular context of spatial filtering and signal fusion problems, we recently proposed the Distributed Adaptive Signal Fusion (DASF) algorithm, which distributively computes a spatial filter expressed as the solution of a smooth optimization problem involving the network-wide sensor signal statistics. In this work, we show that the DASF algorithm can be extended to compute the filters associated with a certain class of non-smooth optimization problems. This extension makes the addition of sparsity-inducing norms to the problem's cost function possible, allowing sensor selection to be performed in a distributed fashion, alongside the filtering task of interest, thereby further reducing the network's energy consumption. We provide a description of the algorithm, prove its convergence, and validate its performance and solution tracking capabilities with numerical experiments.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"4682-4697"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Distributed Adaptive Algorithm for Non-Smooth Spatial Filtering Problems in Wireless Sensor Networks\",\"authors\":\"Charles Hovine;Alexander Bertrand\",\"doi\":\"10.1109/TSP.2024.3474168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wireless sensor network often relies on a fusion center to process the data collected by each of its sensing nodes. Such an approach relies on the continuous transmission of raw data to the fusion center, which typically has a major impact on the sensors’ battery life. To address this issue in the particular context of spatial filtering and signal fusion problems, we recently proposed the Distributed Adaptive Signal Fusion (DASF) algorithm, which distributively computes a spatial filter expressed as the solution of a smooth optimization problem involving the network-wide sensor signal statistics. In this work, we show that the DASF algorithm can be extended to compute the filters associated with a certain class of non-smooth optimization problems. This extension makes the addition of sparsity-inducing norms to the problem's cost function possible, allowing sensor selection to be performed in a distributed fashion, alongside the filtering task of interest, thereby further reducing the network's energy consumption. We provide a description of the algorithm, prove its convergence, and validate its performance and solution tracking capabilities with numerical experiments.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"72 \",\"pages\":\"4682-4697\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705341/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705341/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Distributed Adaptive Algorithm for Non-Smooth Spatial Filtering Problems in Wireless Sensor Networks
A wireless sensor network often relies on a fusion center to process the data collected by each of its sensing nodes. Such an approach relies on the continuous transmission of raw data to the fusion center, which typically has a major impact on the sensors’ battery life. To address this issue in the particular context of spatial filtering and signal fusion problems, we recently proposed the Distributed Adaptive Signal Fusion (DASF) algorithm, which distributively computes a spatial filter expressed as the solution of a smooth optimization problem involving the network-wide sensor signal statistics. In this work, we show that the DASF algorithm can be extended to compute the filters associated with a certain class of non-smooth optimization problems. This extension makes the addition of sparsity-inducing norms to the problem's cost function possible, allowing sensor selection to be performed in a distributed fashion, alongside the filtering task of interest, thereby further reducing the network's energy consumption. We provide a description of the algorithm, prove its convergence, and validate its performance and solution tracking capabilities with numerical experiments.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.