鱼类如何失手?三刺鱼捕捉非入侵性猎物的攻击策略

IF 2.8 2区 生物学 Q2 BIOLOGY Journal of Experimental Biology Pub Date : 2024-11-15 Epub Date: 2024-11-14 DOI:10.1242/jeb.247814
Seth Shirazi, Timothy E Higham
{"title":"鱼类如何失手?三刺鱼捕捉非入侵性猎物的攻击策略","authors":"Seth Shirazi, Timothy E Higham","doi":"10.1242/jeb.247814","DOIUrl":null,"url":null,"abstract":"<p><p>Most predators rely on capturing prey for survival, yet failure is common. Failure is often attributed to prey evasion, but predator miscalculation and/or inaccuracy may also drive an unsuccessful event. We addressed the latter using threespine stickleback as predators and bloodworms (non-evasive) as prey. High-speed videography of the entire attack allowed us to determine the strike tactics leading to successful or missed strikes. We analyzed movements and morphological traits from 57 individuals. Our results reveal that kinematics drive the strike outcome and that failed strikes primarily arise from incorrect timing of mouth opening, often beginning too far from the prey for suction to be effective. This likely stems from the lack of integration between locomotion and feeding systems. Our study begins to unravel the important link between behavior and success in fish feeding.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How do fish miss? Attack strategies of threespine stickleback capturing non-evasive prey.\",\"authors\":\"Seth Shirazi, Timothy E Higham\",\"doi\":\"10.1242/jeb.247814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most predators rely on capturing prey for survival, yet failure is common. Failure is often attributed to prey evasion, but predator miscalculation and/or inaccuracy may also drive an unsuccessful event. We addressed the latter using threespine stickleback as predators and bloodworms (non-evasive) as prey. High-speed videography of the entire attack allowed us to determine the strike tactics leading to successful or missed strikes. We analyzed movements and morphological traits from 57 individuals. Our results reveal that kinematics drive the strike outcome and that failed strikes primarily arise from incorrect timing of mouth opening, often beginning too far from the prey for suction to be effective. This likely stems from the lack of integration between locomotion and feeding systems. Our study begins to unravel the important link between behavior and success in fish feeding.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.247814\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.247814","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大多数捕食者依靠捕捉猎物生存,但失败是常有的事。失败通常归因于猎物的逃避,但捕食者的误判和/或不准确也可能导致捕食失败。我们使用三刺鱼作为捕食者,以血虫(非回避型)作为猎物来研究后者。通过对整个攻击过程进行高速录像,我们可以确定导致攻击成功或失败的攻击策略。我们分析了 57 个个体的运动和形态特征。我们的结果表明,运动学驱动着攻击结果,失败的攻击主要是由于张口时机不正确,往往是在离猎物太远的地方开始,吸力无法有效发挥作用。这可能是由于运动和摄食系统之间缺乏整合。我们的研究开始揭示鱼类摄食行为与成功之间的重要联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How do fish miss? Attack strategies of threespine stickleback capturing non-evasive prey.

Most predators rely on capturing prey for survival, yet failure is common. Failure is often attributed to prey evasion, but predator miscalculation and/or inaccuracy may also drive an unsuccessful event. We addressed the latter using threespine stickleback as predators and bloodworms (non-evasive) as prey. High-speed videography of the entire attack allowed us to determine the strike tactics leading to successful or missed strikes. We analyzed movements and morphological traits from 57 individuals. Our results reveal that kinematics drive the strike outcome and that failed strikes primarily arise from incorrect timing of mouth opening, often beginning too far from the prey for suction to be effective. This likely stems from the lack of integration between locomotion and feeding systems. Our study begins to unravel the important link between behavior and success in fish feeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
期刊最新文献
How do fish miss? Attack strategies of threespine stickleback capturing non-evasive prey. Hypertonic water reabsorption with a parallel-current system via the glandular and saccular renal tubules of Ruditapes philippinarum. Skittering locomotion in cricket frogs: a form of porpoising. Investigating in vivo force and work production of rat medial gastrocnemius at varying locomotor speeds using a muscle avatar. Bridging the divide in organismal physiology: a case for the integration of behaviour as a physiological process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1