{"title":"高级糖化终产物通过 PKC/p47 phox 轴促进骨骼肌细胞产生 ROS。","authors":"Shinichiro Suzuki, Tatsuya Hayashi, Tatsuro Egawa","doi":"10.1186/s12576-024-00944-1","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced glycation end products (AGEs) are risk factors for various diseases, including sarcopenia. One of the deleterious effects of AGEs is the induction of abnormal reactive oxygen species (ROS) production in skeletal muscle. However, the underlying mechanism remains poorly understood. Therefore, the aim of this study was to elucidate how AGEs induce ROS production in skeletal muscle cells. This study demonstrated that AGEs treatment promoted ROS production in myoblasts and myotubes while PKC inhibitor abolished ROS production by AGEs stimulation. Phosphorylation of p47 phox by kinases such as PKCα is required to form the Nox2 complex, which induces ROS production. In this study, AGEs treatment promoted the phosphorylation of PKCα and p47 phox in myoblasts and myotubes. Our findings suggest that AGEs promote ROS production through the phosphorylation of PKCα and p47 phox in skeletal muscle cells.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"51"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452979/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced glycation end products promote ROS production via PKC/p47 phox axis in skeletal muscle cells.\",\"authors\":\"Shinichiro Suzuki, Tatsuya Hayashi, Tatsuro Egawa\",\"doi\":\"10.1186/s12576-024-00944-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advanced glycation end products (AGEs) are risk factors for various diseases, including sarcopenia. One of the deleterious effects of AGEs is the induction of abnormal reactive oxygen species (ROS) production in skeletal muscle. However, the underlying mechanism remains poorly understood. Therefore, the aim of this study was to elucidate how AGEs induce ROS production in skeletal muscle cells. This study demonstrated that AGEs treatment promoted ROS production in myoblasts and myotubes while PKC inhibitor abolished ROS production by AGEs stimulation. Phosphorylation of p47 phox by kinases such as PKCα is required to form the Nox2 complex, which induces ROS production. In this study, AGEs treatment promoted the phosphorylation of PKCα and p47 phox in myoblasts and myotubes. Our findings suggest that AGEs promote ROS production through the phosphorylation of PKCα and p47 phox in skeletal muscle cells.</p>\",\"PeriodicalId\":16832,\"journal\":{\"name\":\"Journal of Physiological Sciences\",\"volume\":\"74 1\",\"pages\":\"51\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452979/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12576-024-00944-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12576-024-00944-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Advanced glycation end products promote ROS production via PKC/p47 phox axis in skeletal muscle cells.
Advanced glycation end products (AGEs) are risk factors for various diseases, including sarcopenia. One of the deleterious effects of AGEs is the induction of abnormal reactive oxygen species (ROS) production in skeletal muscle. However, the underlying mechanism remains poorly understood. Therefore, the aim of this study was to elucidate how AGEs induce ROS production in skeletal muscle cells. This study demonstrated that AGEs treatment promoted ROS production in myoblasts and myotubes while PKC inhibitor abolished ROS production by AGEs stimulation. Phosphorylation of p47 phox by kinases such as PKCα is required to form the Nox2 complex, which induces ROS production. In this study, AGEs treatment promoted the phosphorylation of PKCα and p47 phox in myoblasts and myotubes. Our findings suggest that AGEs promote ROS production through the phosphorylation of PKCα and p47 phox in skeletal muscle cells.
期刊介绍:
The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound.
Fields covered:
Adaptation and environment
Autonomic nervous function
Biophysics
Cell sensors and signaling
Central nervous system and brain sciences
Endocrinology and metabolism
Excitable membranes and neural cell physiology
Exercise physiology
Gastrointestinal and kidney physiology
Heart and circulatory physiology
Molecular and cellular physiology
Muscle physiology
Physiome/systems biology
Respiration physiology
Senses.