Álvaro Pérez-Valero, Patricia Magadán-Corpas, Kinga Dulak, Agata Matera, Suhui Ye, Ewa Huszcza, Jarosław Popłoński, Claudio J Villar, Felipe Lombó
{"title":"鉴定白僵菌 J1074 中具有广泛底物灵活性的多酚 O-甲基转移酶。","authors":"Álvaro Pérez-Valero, Patricia Magadán-Corpas, Kinga Dulak, Agata Matera, Suhui Ye, Ewa Huszcza, Jarosław Popłoński, Claudio J Villar, Felipe Lombó","doi":"10.1186/s12934-024-02541-8","DOIUrl":null,"url":null,"abstract":"<p><p>Flavonoids are a large and important group of phytochemicals with a great variety of bioactivities. The addition of methyl groups during biosynthesis of flavonoids and other polyphenols enhances their bioactivities and increases their stability. In a previous study of our research group, we detected a novel flavonoid O-methyltransferase activity in Streptomyces albidoflavus J1074, which led to the heterologous biosynthesis of homohesperetin from hesperetin in feeding cultures. In this study, we identify the O-methyltransferase responsible for the generation of this methylated flavonoid through the construction of a knockout mutant of the gene XNR_0417, which was selected after a blast analysis using the sequence of a caffeic acid 3'-O-methyltransferase from Zea mays against the genome of S. albidoflavus J1074. This mutant strain, S. albidoflavus ∆XNR_0417, was no longer able to produce homohesperetin after hesperetin feeding. Subsequently, we carried out a genetic complementation of the mutant strain in order to confirm that the enzyme encoded by XNR_0417 is responsible for the observed O-methyltransferase activity. This new strain, S. albidoflavus SP43-XNR_0417, was able to produce not only homohesperetin from hesperetin, but also different mono-, di-, tri- and tetra-methylated derivatives on other flavanones, flavones and stilbenes, revealing a broad substrate flexibility. Additionally, in vitro experiments were conducted using the purified enzyme on the substrates previously tested in vivo, demonstrating doubtless the capability of XNR_0417 to generate various methylated derivatives.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"265"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453095/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of a polyphenol O-methyltransferase with broad substrate flexibility in Streptomyces albidoflavus J1074.\",\"authors\":\"Álvaro Pérez-Valero, Patricia Magadán-Corpas, Kinga Dulak, Agata Matera, Suhui Ye, Ewa Huszcza, Jarosław Popłoński, Claudio J Villar, Felipe Lombó\",\"doi\":\"10.1186/s12934-024-02541-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flavonoids are a large and important group of phytochemicals with a great variety of bioactivities. The addition of methyl groups during biosynthesis of flavonoids and other polyphenols enhances their bioactivities and increases their stability. In a previous study of our research group, we detected a novel flavonoid O-methyltransferase activity in Streptomyces albidoflavus J1074, which led to the heterologous biosynthesis of homohesperetin from hesperetin in feeding cultures. In this study, we identify the O-methyltransferase responsible for the generation of this methylated flavonoid through the construction of a knockout mutant of the gene XNR_0417, which was selected after a blast analysis using the sequence of a caffeic acid 3'-O-methyltransferase from Zea mays against the genome of S. albidoflavus J1074. This mutant strain, S. albidoflavus ∆XNR_0417, was no longer able to produce homohesperetin after hesperetin feeding. Subsequently, we carried out a genetic complementation of the mutant strain in order to confirm that the enzyme encoded by XNR_0417 is responsible for the observed O-methyltransferase activity. This new strain, S. albidoflavus SP43-XNR_0417, was able to produce not only homohesperetin from hesperetin, but also different mono-, di-, tri- and tetra-methylated derivatives on other flavanones, flavones and stilbenes, revealing a broad substrate flexibility. Additionally, in vitro experiments were conducted using the purified enzyme on the substrates previously tested in vivo, demonstrating doubtless the capability of XNR_0417 to generate various methylated derivatives.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"23 1\",\"pages\":\"265\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453095/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-024-02541-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02541-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Identification of a polyphenol O-methyltransferase with broad substrate flexibility in Streptomyces albidoflavus J1074.
Flavonoids are a large and important group of phytochemicals with a great variety of bioactivities. The addition of methyl groups during biosynthesis of flavonoids and other polyphenols enhances their bioactivities and increases their stability. In a previous study of our research group, we detected a novel flavonoid O-methyltransferase activity in Streptomyces albidoflavus J1074, which led to the heterologous biosynthesis of homohesperetin from hesperetin in feeding cultures. In this study, we identify the O-methyltransferase responsible for the generation of this methylated flavonoid through the construction of a knockout mutant of the gene XNR_0417, which was selected after a blast analysis using the sequence of a caffeic acid 3'-O-methyltransferase from Zea mays against the genome of S. albidoflavus J1074. This mutant strain, S. albidoflavus ∆XNR_0417, was no longer able to produce homohesperetin after hesperetin feeding. Subsequently, we carried out a genetic complementation of the mutant strain in order to confirm that the enzyme encoded by XNR_0417 is responsible for the observed O-methyltransferase activity. This new strain, S. albidoflavus SP43-XNR_0417, was able to produce not only homohesperetin from hesperetin, but also different mono-, di-, tri- and tetra-methylated derivatives on other flavanones, flavones and stilbenes, revealing a broad substrate flexibility. Additionally, in vitro experiments were conducted using the purified enzyme on the substrates previously tested in vivo, demonstrating doubtless the capability of XNR_0417 to generate various methylated derivatives.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems