{"title":"肺泡棘球蚴病的生态流行模型和传播动态。","authors":"Xinmiao Rong , Meng Fan","doi":"10.1016/j.mbs.2024.109304","DOIUrl":null,"url":null,"abstract":"<div><div>Alveolar echinococcosis, transmitted between definitive hosts and intermediate hosts via predation, threatens the health of humans and causes great economic losses in western China. In order to explore the transmission mechanism of this disease, an eco-epidemiological lifecycle model is formulated to illustrate interactions between two hosts. The basic and demographic reproduction numbers are developed to characterize the stability of the disease-free and endemic equilibria as well as bifurcation dynamics. The existence of forward bifurcation and Hopf bifurcation are confirmed and are used to explain the threshold transmission dynamics. Numerical simulations and bifurcation diagrams are also presented to depict rich dynamics of the model. Numerical analysis suggests that improving the control rate of voles will reduce the risk of transmission, while the high predation rate of foxes may also lead to a lower transmission risk, which is different from the predictions of previous studies. The evaluation of three control measures on voles implies that, when the fox’s predation rate is low (high), the chemical (integrated) control will be more effective.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecoepidemic modeling and dynamics of alveolar echinococcosis transmission\",\"authors\":\"Xinmiao Rong , Meng Fan\",\"doi\":\"10.1016/j.mbs.2024.109304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alveolar echinococcosis, transmitted between definitive hosts and intermediate hosts via predation, threatens the health of humans and causes great economic losses in western China. In order to explore the transmission mechanism of this disease, an eco-epidemiological lifecycle model is formulated to illustrate interactions between two hosts. The basic and demographic reproduction numbers are developed to characterize the stability of the disease-free and endemic equilibria as well as bifurcation dynamics. The existence of forward bifurcation and Hopf bifurcation are confirmed and are used to explain the threshold transmission dynamics. Numerical simulations and bifurcation diagrams are also presented to depict rich dynamics of the model. Numerical analysis suggests that improving the control rate of voles will reduce the risk of transmission, while the high predation rate of foxes may also lead to a lower transmission risk, which is different from the predictions of previous studies. The evaluation of three control measures on voles implies that, when the fox’s predation rate is low (high), the chemical (integrated) control will be more effective.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001640\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001640","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ecoepidemic modeling and dynamics of alveolar echinococcosis transmission
Alveolar echinococcosis, transmitted between definitive hosts and intermediate hosts via predation, threatens the health of humans and causes great economic losses in western China. In order to explore the transmission mechanism of this disease, an eco-epidemiological lifecycle model is formulated to illustrate interactions between two hosts. The basic and demographic reproduction numbers are developed to characterize the stability of the disease-free and endemic equilibria as well as bifurcation dynamics. The existence of forward bifurcation and Hopf bifurcation are confirmed and are used to explain the threshold transmission dynamics. Numerical simulations and bifurcation diagrams are also presented to depict rich dynamics of the model. Numerical analysis suggests that improving the control rate of voles will reduce the risk of transmission, while the high predation rate of foxes may also lead to a lower transmission risk, which is different from the predictions of previous studies. The evaluation of three control measures on voles implies that, when the fox’s predation rate is low (high), the chemical (integrated) control will be more effective.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.