肺泡棘球蚴病的生态流行模型和传播动态。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-03 DOI:10.1016/j.mbs.2024.109304
Xinmiao Rong , Meng Fan
{"title":"肺泡棘球蚴病的生态流行模型和传播动态。","authors":"Xinmiao Rong ,&nbsp;Meng Fan","doi":"10.1016/j.mbs.2024.109304","DOIUrl":null,"url":null,"abstract":"<div><div>Alveolar echinococcosis, transmitted between definitive hosts and intermediate hosts via predation, threatens the health of humans and causes great economic losses in western China. In order to explore the transmission mechanism of this disease, an eco-epidemiological lifecycle model is formulated to illustrate interactions between two hosts. The basic and demographic reproduction numbers are developed to characterize the stability of the disease-free and endemic equilibria as well as bifurcation dynamics. The existence of forward bifurcation and Hopf bifurcation are confirmed and are used to explain the threshold transmission dynamics. Numerical simulations and bifurcation diagrams are also presented to depict rich dynamics of the model. Numerical analysis suggests that improving the control rate of voles will reduce the risk of transmission, while the high predation rate of foxes may also lead to a lower transmission risk, which is different from the predictions of previous studies. The evaluation of three control measures on voles implies that, when the fox’s predation rate is low (high), the chemical (integrated) control will be more effective.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecoepidemic modeling and dynamics of alveolar echinococcosis transmission\",\"authors\":\"Xinmiao Rong ,&nbsp;Meng Fan\",\"doi\":\"10.1016/j.mbs.2024.109304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alveolar echinococcosis, transmitted between definitive hosts and intermediate hosts via predation, threatens the health of humans and causes great economic losses in western China. In order to explore the transmission mechanism of this disease, an eco-epidemiological lifecycle model is formulated to illustrate interactions between two hosts. The basic and demographic reproduction numbers are developed to characterize the stability of the disease-free and endemic equilibria as well as bifurcation dynamics. The existence of forward bifurcation and Hopf bifurcation are confirmed and are used to explain the threshold transmission dynamics. Numerical simulations and bifurcation diagrams are also presented to depict rich dynamics of the model. Numerical analysis suggests that improving the control rate of voles will reduce the risk of transmission, while the high predation rate of foxes may also lead to a lower transmission risk, which is different from the predictions of previous studies. The evaluation of three control measures on voles implies that, when the fox’s predation rate is low (high), the chemical (integrated) control will be more effective.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001640\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001640","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在中国西部,肺泡棘球蚴病通过捕食在终宿主和中间宿主之间传播,威胁人类健康并造成巨大经济损失。为了探索该病的传播机制,本文建立了一个生态流行病学生命周期模型,以说明两种宿主之间的相互作用。建立了基本繁殖数和人口繁殖数,以表征无病平衡和流行平衡的稳定性以及分叉动力学。证实了正向分岔和霍普夫分岔的存在,并用来解释阈值传播动力学。数值模拟和分岔图也用来描述模型的丰富动态。数值分析表明,提高田鼠的控制率将降低传播风险,而狐狸的高捕食率也可能导致传播风险降低,这与以往研究的预测不同。对田鼠三种控制措施的评估表明,当狐狸捕食率低(高)时,化学(综合)控制会更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ecoepidemic modeling and dynamics of alveolar echinococcosis transmission
Alveolar echinococcosis, transmitted between definitive hosts and intermediate hosts via predation, threatens the health of humans and causes great economic losses in western China. In order to explore the transmission mechanism of this disease, an eco-epidemiological lifecycle model is formulated to illustrate interactions between two hosts. The basic and demographic reproduction numbers are developed to characterize the stability of the disease-free and endemic equilibria as well as bifurcation dynamics. The existence of forward bifurcation and Hopf bifurcation are confirmed and are used to explain the threshold transmission dynamics. Numerical simulations and bifurcation diagrams are also presented to depict rich dynamics of the model. Numerical analysis suggests that improving the control rate of voles will reduce the risk of transmission, while the high predation rate of foxes may also lead to a lower transmission risk, which is different from the predictions of previous studies. The evaluation of three control measures on voles implies that, when the fox’s predation rate is low (high), the chemical (integrated) control will be more effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1