Zubeir Allum Saib, Farid Abed, Mergen H Ghayesh, Marco Amabili
{"title":"存在低细胞和钙化斑块时自膨胀支架与动脉壁的相互作用。","authors":"Zubeir Allum Saib, Farid Abed, Mergen H Ghayesh, Marco Amabili","doi":"10.1007/s10237-024-01896-6","DOIUrl":null,"url":null,"abstract":"<p><p>Self-expandable stents manufactured from nitinol alloys are commonly utilized alongside traditional balloon-expandable stents to provide scaffolding to stenosed arteries. However, a significant limitation hampering stent efficacy is restenosis, triggered by neointimal hyperplasia and resulting in the loss of gain in lumen size, post-intervention. In this study, a nonlinear finite element model was developed to simulate stent crimping and expansion and its interaction with the surrounding vessel in the presence of a plaque. The main aim was to determine contact pressures and forces induced at the interface between an artery wall with hypocellular and calcified plaques and an expanded stent. The results demonstrated the drawbacks of plaque calcification, which triggered a sharp contact pressure and radial force surge at the interface as well as a significant rise in von Mises stress within the vessel, potentially leading to rupture and restenosis. A regression line was then established to relate hypocellular and calcified plaques. The adjusted coefficient of determination indicated a good correlation between contact pressures for calcified and hypocellular plaque models. Regarding the directionality of wall properties, contact pressure and force observations were not significantly different between isotropic and anisotropic arteries. Moreover, variations in friction coefficients did not substantially affect the interfacial contact pressures.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of a self-expandable stent with the arterial wall in the presence of hypocellular and calcified plaques.\",\"authors\":\"Zubeir Allum Saib, Farid Abed, Mergen H Ghayesh, Marco Amabili\",\"doi\":\"10.1007/s10237-024-01896-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-expandable stents manufactured from nitinol alloys are commonly utilized alongside traditional balloon-expandable stents to provide scaffolding to stenosed arteries. However, a significant limitation hampering stent efficacy is restenosis, triggered by neointimal hyperplasia and resulting in the loss of gain in lumen size, post-intervention. In this study, a nonlinear finite element model was developed to simulate stent crimping and expansion and its interaction with the surrounding vessel in the presence of a plaque. The main aim was to determine contact pressures and forces induced at the interface between an artery wall with hypocellular and calcified plaques and an expanded stent. The results demonstrated the drawbacks of plaque calcification, which triggered a sharp contact pressure and radial force surge at the interface as well as a significant rise in von Mises stress within the vessel, potentially leading to rupture and restenosis. A regression line was then established to relate hypocellular and calcified plaques. The adjusted coefficient of determination indicated a good correlation between contact pressures for calcified and hypocellular plaque models. Regarding the directionality of wall properties, contact pressure and force observations were not significantly different between isotropic and anisotropic arteries. Moreover, variations in friction coefficients did not substantially affect the interfacial contact pressures.</p>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10237-024-01896-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-024-01896-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Interaction of a self-expandable stent with the arterial wall in the presence of hypocellular and calcified plaques.
Self-expandable stents manufactured from nitinol alloys are commonly utilized alongside traditional balloon-expandable stents to provide scaffolding to stenosed arteries. However, a significant limitation hampering stent efficacy is restenosis, triggered by neointimal hyperplasia and resulting in the loss of gain in lumen size, post-intervention. In this study, a nonlinear finite element model was developed to simulate stent crimping and expansion and its interaction with the surrounding vessel in the presence of a plaque. The main aim was to determine contact pressures and forces induced at the interface between an artery wall with hypocellular and calcified plaques and an expanded stent. The results demonstrated the drawbacks of plaque calcification, which triggered a sharp contact pressure and radial force surge at the interface as well as a significant rise in von Mises stress within the vessel, potentially leading to rupture and restenosis. A regression line was then established to relate hypocellular and calcified plaques. The adjusted coefficient of determination indicated a good correlation between contact pressures for calcified and hypocellular plaque models. Regarding the directionality of wall properties, contact pressure and force observations were not significantly different between isotropic and anisotropic arteries. Moreover, variations in friction coefficients did not substantially affect the interfacial contact pressures.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.