Timothy Schofield, John Kavanagh, Zhongyan Li, Alexandra O'Donohue, Aaron Schindeler, Fariba Dehghani, Sepehr Talebian, Peter Valtchev
{"title":"乳双歧杆菌和植物乳杆菌在新型多糖核壳制剂中的微胶囊化:提高益生菌活力和黏附性。","authors":"Timothy Schofield, John Kavanagh, Zhongyan Li, Alexandra O'Donohue, Aaron Schindeler, Fariba Dehghani, Sepehr Talebian, Peter Valtchev","doi":"10.1021/acsbiomaterials.4c00852","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotics health benefits are hampered by long-term storage, gastrointestinal transit, and lack of adequate colonization within the colon. To this end, we have designed a core-shell structure that features an acid resistant core formulation with low water activity composed of alginate, hydroxypropyl methyl cellulose, and gellan gum (AHG) and a mucoadhesive shell made from chemically modified carboxymethyl chitosan with polyethylenimine (PEI-CMC). The structure of the core-shell microparticles was examined using scanning electron microscopy, and rheological measurements confirmed the improved ionic interactions between the core and the shell using the PEI-modified CMC. Simulated release from core-shell microparticles using polystyrene beads showed preferential release under intestinal conditions. PEI-CMC coating yielded improvements in mucoadhesion that was consistent with a positive shift in surface charge of the particles. Ex vivo studies using <i>Bifidobacterium lactis</i> probiotic bacteria demonstrated a 1.1 × 10<sup>5</sup>-fold improvement in bacterial viability with encapsulation under storage conditions of high humidity and temperature (30 °C). When exposed to simulated gastric fluid, encapsulation increased the probiotic viability by 3.0 × 10<sup>2</sup>-fold. In vivo studies utilizing bioluminescent <i>Lactobacillus plantarum</i> in mice revealed that encapsulation extended the duration of the signal within the gut and resulted in higher plate counts in suspensions isolated from the cecum. Conversely, we observed an abrupt loss of signal in the gut of the free probiotic. In conclusion, this core-shell system is suitable for improving probiotic shelf life and maximizing delivery to and retention by the colon.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"6903-6914"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microencapsulation of <i>Bifidobacterium lactis</i> and <i>Lactobacillus plantarum</i> within a Novel Polysaccharide-Based Core-Shell Formulation: Improving Probiotic Viability and Mucoadhesion.\",\"authors\":\"Timothy Schofield, John Kavanagh, Zhongyan Li, Alexandra O'Donohue, Aaron Schindeler, Fariba Dehghani, Sepehr Talebian, Peter Valtchev\",\"doi\":\"10.1021/acsbiomaterials.4c00852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Probiotics health benefits are hampered by long-term storage, gastrointestinal transit, and lack of adequate colonization within the colon. To this end, we have designed a core-shell structure that features an acid resistant core formulation with low water activity composed of alginate, hydroxypropyl methyl cellulose, and gellan gum (AHG) and a mucoadhesive shell made from chemically modified carboxymethyl chitosan with polyethylenimine (PEI-CMC). The structure of the core-shell microparticles was examined using scanning electron microscopy, and rheological measurements confirmed the improved ionic interactions between the core and the shell using the PEI-modified CMC. Simulated release from core-shell microparticles using polystyrene beads showed preferential release under intestinal conditions. PEI-CMC coating yielded improvements in mucoadhesion that was consistent with a positive shift in surface charge of the particles. Ex vivo studies using <i>Bifidobacterium lactis</i> probiotic bacteria demonstrated a 1.1 × 10<sup>5</sup>-fold improvement in bacterial viability with encapsulation under storage conditions of high humidity and temperature (30 °C). When exposed to simulated gastric fluid, encapsulation increased the probiotic viability by 3.0 × 10<sup>2</sup>-fold. In vivo studies utilizing bioluminescent <i>Lactobacillus plantarum</i> in mice revealed that encapsulation extended the duration of the signal within the gut and resulted in higher plate counts in suspensions isolated from the cecum. Conversely, we observed an abrupt loss of signal in the gut of the free probiotic. In conclusion, this core-shell system is suitable for improving probiotic shelf life and maximizing delivery to and retention by the colon.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"6903-6914\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c00852\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c00852","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Microencapsulation of Bifidobacterium lactis and Lactobacillus plantarum within a Novel Polysaccharide-Based Core-Shell Formulation: Improving Probiotic Viability and Mucoadhesion.
Probiotics health benefits are hampered by long-term storage, gastrointestinal transit, and lack of adequate colonization within the colon. To this end, we have designed a core-shell structure that features an acid resistant core formulation with low water activity composed of alginate, hydroxypropyl methyl cellulose, and gellan gum (AHG) and a mucoadhesive shell made from chemically modified carboxymethyl chitosan with polyethylenimine (PEI-CMC). The structure of the core-shell microparticles was examined using scanning electron microscopy, and rheological measurements confirmed the improved ionic interactions between the core and the shell using the PEI-modified CMC. Simulated release from core-shell microparticles using polystyrene beads showed preferential release under intestinal conditions. PEI-CMC coating yielded improvements in mucoadhesion that was consistent with a positive shift in surface charge of the particles. Ex vivo studies using Bifidobacterium lactis probiotic bacteria demonstrated a 1.1 × 105-fold improvement in bacterial viability with encapsulation under storage conditions of high humidity and temperature (30 °C). When exposed to simulated gastric fluid, encapsulation increased the probiotic viability by 3.0 × 102-fold. In vivo studies utilizing bioluminescent Lactobacillus plantarum in mice revealed that encapsulation extended the duration of the signal within the gut and resulted in higher plate counts in suspensions isolated from the cecum. Conversely, we observed an abrupt loss of signal in the gut of the free probiotic. In conclusion, this core-shell system is suitable for improving probiotic shelf life and maximizing delivery to and retention by the colon.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture