Doaa R I Abdel-Gawad, Fatma Khalil, Olfat Shehata, Marwa A Ibrahim, SalmaI El-Samannoudy, Emad A Mahdi, Nema S Shaban
{"title":"骨髓间充质干细胞衍生的外泌体在减少多柔比星诱导的大鼠神经毒性和抑郁样行为中的作用","authors":"Doaa R I Abdel-Gawad, Fatma Khalil, Olfat Shehata, Marwa A Ibrahim, SalmaI El-Samannoudy, Emad A Mahdi, Nema S Shaban","doi":"10.1093/toxres/tfae159","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Doxorubicin (DOX) is a broad-spectrum antitumor drug while its use is limited nowadays due to its neurobiological side effects associated with depression. Bone marrow mesenchymal stem cells (BM-MSCs) derived exosomes are a promising regenerative therapy. In this study, we investigated the therapeutic potentiality of BM-MSCs derived exosomes against the neurotoxicity induced by DOX.</p><p><strong>Methods: </strong>Twenty-four male albino rats were divided equally in to three groups as follow: group 1 (control), group 2 (rats injected intraperitoneally (i.p|) with DOX at a dose 2.5mg/Kg), and group 3 (rats injected with DOX and BM-MSCs derived exosomes i.p at a dose 1.5ml/Kg). During the experiment the behavior tests were noted, after three weeks rats were sacrificed, serum and brain samples were collected for biochemical, molecular and histopathological examinations.</p><p><strong>Results: </strong>The results revealed that DOX causing impairment of the locomotor and increasing the anxiety like behavior of rats, marked neuropathological changes, significant elevation of MDA content and TNF-α concentration, reduction of phospholipase (PLD) and acetylcholinesterase (AChE) protein concentration in addition, there were up regulation of JNK, NF-κB and p38 genes and down regulation of Erk1.</p><p><strong>Conclusion: </strong>Exosomal therapy improved the substantial neurotoxicity of DOX through modulating the markers involved in the neurotoxic signalling pathway of DOX that resulting in improving the pathological lesions and the animal behaviours.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 5","pages":"tfae159"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447378/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of bone marrow mesenchymal stem cell-derived exosomes in reducing neurotoxicity and depression-like behaviors induced by doxorubicin in rats.\",\"authors\":\"Doaa R I Abdel-Gawad, Fatma Khalil, Olfat Shehata, Marwa A Ibrahim, SalmaI El-Samannoudy, Emad A Mahdi, Nema S Shaban\",\"doi\":\"10.1093/toxres/tfae159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Doxorubicin (DOX) is a broad-spectrum antitumor drug while its use is limited nowadays due to its neurobiological side effects associated with depression. Bone marrow mesenchymal stem cells (BM-MSCs) derived exosomes are a promising regenerative therapy. In this study, we investigated the therapeutic potentiality of BM-MSCs derived exosomes against the neurotoxicity induced by DOX.</p><p><strong>Methods: </strong>Twenty-four male albino rats were divided equally in to three groups as follow: group 1 (control), group 2 (rats injected intraperitoneally (i.p|) with DOX at a dose 2.5mg/Kg), and group 3 (rats injected with DOX and BM-MSCs derived exosomes i.p at a dose 1.5ml/Kg). During the experiment the behavior tests were noted, after three weeks rats were sacrificed, serum and brain samples were collected for biochemical, molecular and histopathological examinations.</p><p><strong>Results: </strong>The results revealed that DOX causing impairment of the locomotor and increasing the anxiety like behavior of rats, marked neuropathological changes, significant elevation of MDA content and TNF-α concentration, reduction of phospholipase (PLD) and acetylcholinesterase (AChE) protein concentration in addition, there were up regulation of JNK, NF-κB and p38 genes and down regulation of Erk1.</p><p><strong>Conclusion: </strong>Exosomal therapy improved the substantial neurotoxicity of DOX through modulating the markers involved in the neurotoxic signalling pathway of DOX that resulting in improving the pathological lesions and the animal behaviours.</p>\",\"PeriodicalId\":105,\"journal\":{\"name\":\"Toxicology Research\",\"volume\":\"13 5\",\"pages\":\"tfae159\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447378/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxres/tfae159\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae159","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Role of bone marrow mesenchymal stem cell-derived exosomes in reducing neurotoxicity and depression-like behaviors induced by doxorubicin in rats.
Background: Doxorubicin (DOX) is a broad-spectrum antitumor drug while its use is limited nowadays due to its neurobiological side effects associated with depression. Bone marrow mesenchymal stem cells (BM-MSCs) derived exosomes are a promising regenerative therapy. In this study, we investigated the therapeutic potentiality of BM-MSCs derived exosomes against the neurotoxicity induced by DOX.
Methods: Twenty-four male albino rats were divided equally in to three groups as follow: group 1 (control), group 2 (rats injected intraperitoneally (i.p|) with DOX at a dose 2.5mg/Kg), and group 3 (rats injected with DOX and BM-MSCs derived exosomes i.p at a dose 1.5ml/Kg). During the experiment the behavior tests were noted, after three weeks rats were sacrificed, serum and brain samples were collected for biochemical, molecular and histopathological examinations.
Results: The results revealed that DOX causing impairment of the locomotor and increasing the anxiety like behavior of rats, marked neuropathological changes, significant elevation of MDA content and TNF-α concentration, reduction of phospholipase (PLD) and acetylcholinesterase (AChE) protein concentration in addition, there were up regulation of JNK, NF-κB and p38 genes and down regulation of Erk1.
Conclusion: Exosomal therapy improved the substantial neurotoxicity of DOX through modulating the markers involved in the neurotoxic signalling pathway of DOX that resulting in improving the pathological lesions and the animal behaviours.