基于晶体管的液体有机磷实时、特异和无标记传感。

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2024-10-04 DOI:10.1016/j.envres.2024.120089
Rakefet Samueli, Shubham Babbar, Yuval Ben-Shahar, Soumadri Samanta, Shankar Bhattarai, Sherina Harilal, Gil Feldheim, Evgeny Pikhay, Inna Shehter, Ayala Elkayam, Muhammad Y Bashouti, Barak Akabayov, Izhar Ron, Yakov Roizin, Gil Shalev
{"title":"基于晶体管的液体有机磷实时、特异和无标记传感。","authors":"Rakefet Samueli, Shubham Babbar, Yuval Ben-Shahar, Soumadri Samanta, Shankar Bhattarai, Sherina Harilal, Gil Feldheim, Evgeny Pikhay, Inna Shehter, Ayala Elkayam, Muhammad Y Bashouti, Barak Akabayov, Izhar Ron, Yakov Roizin, Gil Shalev","doi":"10.1016/j.envres.2024.120089","DOIUrl":null,"url":null,"abstract":"<p><p>Organophosphates (OP), commonly used in agriculture and as chemical warfare agents, pose significant environmental risks, necessitating real-time, low-cost OP detection methods. In particular, liquid-phase OP sensing with minimal sample volumes is crucial. While several methods allow rapid detection of low concentrations of OP vapors, they are effective only in the short term, while vapors are still being produced. Many OP compounds are semi-volatile, leading to the contamination of water, soil, and surfaces, posing a risk of secondary, long-term exposure. Detecting this contamination requires methods that can be directly applied to droplets of the affected medium. Currently, no method provides the desired combination of ultra-sensitivity, quantitative detection, rapid response, and low-cost for detecting OPs in liquid samples. This study aims to demonstrate quantitative, low-cost, real-time, specific, and label-free OP sensing in ultra-small samples using a transistor-based approach. The current work employs the 2-(4-Aminophenyl)-1,1,1,3,3,3-hexafluoro-2-propanol (aminophenyl-HFIP) functionalized meta-nano-channel field-effect chemical sensor (MNChem sensor) to monitor the organophosphate, diethyl cyanophosphonate (DCNP), in liquid samples. The silicon component of the MNChem is fabricated using a complementary metal-oxide semiconductor (CMOS) process, and the amine-based chemical functionalization of the sensing area is performed post-fabrication. The MNChem sensor provides electrostatic control over the source-drain current (I<sub>DS</sub>), allowing an optimized channel configuration that efficiently transduces localized OP recognition events into significant I<sub>DS</sub> variations. Sensing is performed using 0.5 μL buffer solution to simulate a miniature field-deployable sensor for on-site liquid analysis. We report the sensing of DCNP with a limit-of-detection of 100 fg/mL, a dynamic range of 9 orders of magnitude, and excellent linearity (≥0.97) and sensitivity. Control measurements confirm the specificity and reliability of the sensor's response, validating its applicability. This study introduces a novel method for OP detection in contaminated droplets using a low-cost disposable transistor technology.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time, specific, and label-free transistor-based sensing of organophosphates in liquid.\",\"authors\":\"Rakefet Samueli, Shubham Babbar, Yuval Ben-Shahar, Soumadri Samanta, Shankar Bhattarai, Sherina Harilal, Gil Feldheim, Evgeny Pikhay, Inna Shehter, Ayala Elkayam, Muhammad Y Bashouti, Barak Akabayov, Izhar Ron, Yakov Roizin, Gil Shalev\",\"doi\":\"10.1016/j.envres.2024.120089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organophosphates (OP), commonly used in agriculture and as chemical warfare agents, pose significant environmental risks, necessitating real-time, low-cost OP detection methods. In particular, liquid-phase OP sensing with minimal sample volumes is crucial. While several methods allow rapid detection of low concentrations of OP vapors, they are effective only in the short term, while vapors are still being produced. Many OP compounds are semi-volatile, leading to the contamination of water, soil, and surfaces, posing a risk of secondary, long-term exposure. Detecting this contamination requires methods that can be directly applied to droplets of the affected medium. Currently, no method provides the desired combination of ultra-sensitivity, quantitative detection, rapid response, and low-cost for detecting OPs in liquid samples. This study aims to demonstrate quantitative, low-cost, real-time, specific, and label-free OP sensing in ultra-small samples using a transistor-based approach. The current work employs the 2-(4-Aminophenyl)-1,1,1,3,3,3-hexafluoro-2-propanol (aminophenyl-HFIP) functionalized meta-nano-channel field-effect chemical sensor (MNChem sensor) to monitor the organophosphate, diethyl cyanophosphonate (DCNP), in liquid samples. The silicon component of the MNChem is fabricated using a complementary metal-oxide semiconductor (CMOS) process, and the amine-based chemical functionalization of the sensing area is performed post-fabrication. The MNChem sensor provides electrostatic control over the source-drain current (I<sub>DS</sub>), allowing an optimized channel configuration that efficiently transduces localized OP recognition events into significant I<sub>DS</sub> variations. Sensing is performed using 0.5 μL buffer solution to simulate a miniature field-deployable sensor for on-site liquid analysis. We report the sensing of DCNP with a limit-of-detection of 100 fg/mL, a dynamic range of 9 orders of magnitude, and excellent linearity (≥0.97) and sensitivity. Control measurements confirm the specificity and reliability of the sensor's response, validating its applicability. This study introduces a novel method for OP detection in contaminated droplets using a low-cost disposable transistor technology.</p>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envres.2024.120089\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120089","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有机磷(OP)通常用于农业和化学战剂,对环境构成重大风险,因此有必要采用实时、低成本的 OP 检测方法。其中,以最小的样品量进行液相 OP 检测至关重要。虽然有几种方法可以快速检测低浓度的 OP 蒸汽,但它们只能在蒸汽仍在产生时短期内有效。许多 OP 化合物是半挥发性的,会对水、土壤和物体表面造成污染,带来二次、长期接触的风险。检测这种污染需要能够直接应用于受影响介质液滴的方法。目前,还没有一种方法能在检测液体样本中的 OPs 时实现超灵敏度、定量检测、快速反应和低成本的理想组合。本研究旨在利用一种基于晶体管的方法,在超小型样品中演示定量、低成本、实时、特异和无标记的 OP 检测。目前的研究采用 2-(4-氨基苯基)-1,1,1,3,3,3-六氟-2-丙醇(氨基苯基-HFIP)功能化元纳米通道场效应化学传感器(MNChem 传感器)来监测液体样品中的有机磷酸酯--氰基膦酸二乙酯(DCNP)。MNChem 传感器的硅元件采用互补金属氧化物半导体 (CMOS) 工艺制造,传感区域的胺基化学功能化是在制造后进行的。MNChem 传感器对源极-漏极电流(IDS)进行静电控制,从而优化了通道配置,有效地将局部 OP 识别事件转化为显著的 IDS 变化。使用 0.5 μL 缓冲溶液进行传感,以模拟用于现场液体分析的微型现场部署传感器。我们的报告显示,DCNP 的检测限为 100 fg/mL,动态范围为 9 个数量级,线性度(≥0.97)和灵敏度极佳。对照测量证实了传感器响应的特异性和可靠性,验证了其适用性。本研究介绍了一种利用低成本一次性晶体管技术检测受污染液滴中 OP 的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time, specific, and label-free transistor-based sensing of organophosphates in liquid.

Organophosphates (OP), commonly used in agriculture and as chemical warfare agents, pose significant environmental risks, necessitating real-time, low-cost OP detection methods. In particular, liquid-phase OP sensing with minimal sample volumes is crucial. While several methods allow rapid detection of low concentrations of OP vapors, they are effective only in the short term, while vapors are still being produced. Many OP compounds are semi-volatile, leading to the contamination of water, soil, and surfaces, posing a risk of secondary, long-term exposure. Detecting this contamination requires methods that can be directly applied to droplets of the affected medium. Currently, no method provides the desired combination of ultra-sensitivity, quantitative detection, rapid response, and low-cost for detecting OPs in liquid samples. This study aims to demonstrate quantitative, low-cost, real-time, specific, and label-free OP sensing in ultra-small samples using a transistor-based approach. The current work employs the 2-(4-Aminophenyl)-1,1,1,3,3,3-hexafluoro-2-propanol (aminophenyl-HFIP) functionalized meta-nano-channel field-effect chemical sensor (MNChem sensor) to monitor the organophosphate, diethyl cyanophosphonate (DCNP), in liquid samples. The silicon component of the MNChem is fabricated using a complementary metal-oxide semiconductor (CMOS) process, and the amine-based chemical functionalization of the sensing area is performed post-fabrication. The MNChem sensor provides electrostatic control over the source-drain current (IDS), allowing an optimized channel configuration that efficiently transduces localized OP recognition events into significant IDS variations. Sensing is performed using 0.5 μL buffer solution to simulate a miniature field-deployable sensor for on-site liquid analysis. We report the sensing of DCNP with a limit-of-detection of 100 fg/mL, a dynamic range of 9 orders of magnitude, and excellent linearity (≥0.97) and sensitivity. Control measurements confirm the specificity and reliability of the sensor's response, validating its applicability. This study introduces a novel method for OP detection in contaminated droplets using a low-cost disposable transistor technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
Application of machine learning in ultrasonic pretreatment of sewage sludge: prediction and optimization. Biovalorization of Lignin-Derived Substrates to Vanillylamine via a Self-Sufficient Amino Donor and Cofactor Recycling Whole-Cell Platform. Global Climate Change Impacts on the Potential Distribution of Typical Trachinotus Fishes and Early Warning Assessment of Invasions. Real-time, specific, and label-free transistor-based sensing of organophosphates in liquid. The simultaneous addition of chitosan and peat enhanced the removals of antibiotics resistance genes during biogas residues composting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1