肿瘤侵袭趋化模型的高精度正性保留有限差分近似值

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2024-10-07 DOI:10.1089/cmb.2023.0316
Lin Zhang, Jigen Peng, Yongbin Ge, Haiyang Li, Yuchao Tang
{"title":"肿瘤侵袭趋化模型的高精度正性保留有限差分近似值","authors":"Lin Zhang, Jigen Peng, Yongbin Ge, Haiyang Li, Yuchao Tang","doi":"10.1089/cmb.2023.0316","DOIUrl":null,"url":null,"abstract":"<p><p>Numerical simulation of the complex evolution process for tumor invasion plays an extremely important role in-depth exploring the bio-taxis phenomena of tumor growth and metastasis. In view of the fact that low-accuracy numerical methods often have large errors and low resolution, very refined grids have to be used if we want to get high-resolution simulating results, which leads to a great deal of computational cost. In this paper, we are committed to developing a class of high-accuracy positivity-preserving finite difference methods to solve the chemotaxis model for tumor invasion. First, two unconditionally stable implicit compact difference schemes for solving the model are proposed; second, the local truncation errors of the new schemes are analyzed, which show that they have second-order accuracy in time and fourth-order accuracy in space; third, based on the proposed schemes, the high-accuracy numerical integration idea of binary functions is employed to structure a linear compact weighting formula that guarantees fourth-order accuracy and nonnegative, and then a positivity-preserving and time-marching algorithm is established; and finally, the accuracy, stability, and positivity-preserving of the proposed methods are verified by several numerical experiments, and the evolution phenomena of tumor invasion over time are numerically simulated and analyzed.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Accuracy Positivity-Preserving Finite Difference Approximations of the Chemotaxis Model for Tumor Invasion.\",\"authors\":\"Lin Zhang, Jigen Peng, Yongbin Ge, Haiyang Li, Yuchao Tang\",\"doi\":\"10.1089/cmb.2023.0316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerical simulation of the complex evolution process for tumor invasion plays an extremely important role in-depth exploring the bio-taxis phenomena of tumor growth and metastasis. In view of the fact that low-accuracy numerical methods often have large errors and low resolution, very refined grids have to be used if we want to get high-resolution simulating results, which leads to a great deal of computational cost. In this paper, we are committed to developing a class of high-accuracy positivity-preserving finite difference methods to solve the chemotaxis model for tumor invasion. First, two unconditionally stable implicit compact difference schemes for solving the model are proposed; second, the local truncation errors of the new schemes are analyzed, which show that they have second-order accuracy in time and fourth-order accuracy in space; third, based on the proposed schemes, the high-accuracy numerical integration idea of binary functions is employed to structure a linear compact weighting formula that guarantees fourth-order accuracy and nonnegative, and then a positivity-preserving and time-marching algorithm is established; and finally, the accuracy, stability, and positivity-preserving of the proposed methods are verified by several numerical experiments, and the evolution phenomena of tumor invasion over time are numerically simulated and analyzed.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0316\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0316","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对肿瘤侵袭的复杂演化过程进行数值模拟,对于深入探索肿瘤生长和转移的生物习性现象具有极其重要的作用。鉴于低精度数值方法往往误差大、分辨率低,要想得到高分辨率的模拟结果,就必须使用非常精细的网格,这就导致了大量的计算成本。在本文中,我们致力于开发一类高精度的正向保留有限差分方法来求解肿瘤侵袭的趋化模型。首先,提出了两种无条件稳定的隐式紧凑差分方案来求解该模型;其次,分析了新方案的局部截断误差,结果表明它们在时间上具有二阶精度,在空间上具有四阶精度;最后,通过多次数值实验验证了所提方法的准确性、稳定性和保正性,并对肿瘤侵袭随时间的演变现象进行了数值模拟和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Accuracy Positivity-Preserving Finite Difference Approximations of the Chemotaxis Model for Tumor Invasion.

Numerical simulation of the complex evolution process for tumor invasion plays an extremely important role in-depth exploring the bio-taxis phenomena of tumor growth and metastasis. In view of the fact that low-accuracy numerical methods often have large errors and low resolution, very refined grids have to be used if we want to get high-resolution simulating results, which leads to a great deal of computational cost. In this paper, we are committed to developing a class of high-accuracy positivity-preserving finite difference methods to solve the chemotaxis model for tumor invasion. First, two unconditionally stable implicit compact difference schemes for solving the model are proposed; second, the local truncation errors of the new schemes are analyzed, which show that they have second-order accuracy in time and fourth-order accuracy in space; third, based on the proposed schemes, the high-accuracy numerical integration idea of binary functions is employed to structure a linear compact weighting formula that guarantees fourth-order accuracy and nonnegative, and then a positivity-preserving and time-marching algorithm is established; and finally, the accuracy, stability, and positivity-preserving of the proposed methods are verified by several numerical experiments, and the evolution phenomena of tumor invasion over time are numerically simulated and analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
CLHGNNMDA: Hypergraph Neural Network Model Enhanced by Contrastive Learning for miRNA-Disease Association Prediction. Advances in Estimating Level-1 Phylogenetic Networks from Unrooted SNPs. Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage. The Statistics of Parametrized Syncmers in a Simple Mutation Process Without Spurious Matches. A Hybrid GNN Approach for Improved Molecular Property Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1