Holland Galante, Samuel J Lane, Emily K Elderbrock, Geoffrey Brown, Timothy J Greives
{"title":"实验性睾酮水平升高会提前短日饲养雄性家雀(Passer domesticus)的每日活动开始时间。","authors":"Holland Galante, Samuel J Lane, Emily K Elderbrock, Geoffrey Brown, Timothy J Greives","doi":"10.1002/jez.2871","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonal changes in sleep/wake cycles and behaviors related to reproduction often co-occur with seasonal fluctuations in sex hormones. Experimental studies have established that fluctuations in circulating testosterone mediate circadian rhythms. However, most studies are performed under constant lighting conditions and fail to investigate the effects of testosterone on the phenotypic output of circadian rhythms, that is, chronotype (daily activity patterns under light:dark cycles). Here, we experimentally elevated testosterone with implants during short nonbreeding daylengths in male house sparrows (Passer domesticus) to test if observed seasonal changes in chronotype are directly in response to photoperiod or to testosterone. We fitted individuals with accelerometers to track activity across treatment periods. Birds experienced three treatments periods: short day photoperiods before manipulation (SD), followed by testosterone implants while still on short days (SD + T). Implants were then removed. After a decrease in cloacal protuberance size, an indicator of low testosterone levels, birds were then photostimulated on long days (LD). Blood samples were collected at night, when testosterone peaks, to compare testosterone levels to daily onset/offset activity for experimental periods. Our results indicate that experimentally elevated testosterone under short nonbreeding photoperiods significantly advanced daily onset of activity and total daily activity relative to daylength. This suggests that testosterone, independent of photoperiod, is responsible for seasonal shifts in chronotypes and daily activity rhythms. These findings suggest that sex steroid hormone actions regulate timing of daily behaviors, likely coordinating expression of reproductive behaviors to appropriate times of the day.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimentally Elevated Levels of Testosterone Advance Daily Onset of Activity in Short-Day Housed Male House Sparrows (Passer domesticus).\",\"authors\":\"Holland Galante, Samuel J Lane, Emily K Elderbrock, Geoffrey Brown, Timothy J Greives\",\"doi\":\"10.1002/jez.2871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seasonal changes in sleep/wake cycles and behaviors related to reproduction often co-occur with seasonal fluctuations in sex hormones. Experimental studies have established that fluctuations in circulating testosterone mediate circadian rhythms. However, most studies are performed under constant lighting conditions and fail to investigate the effects of testosterone on the phenotypic output of circadian rhythms, that is, chronotype (daily activity patterns under light:dark cycles). Here, we experimentally elevated testosterone with implants during short nonbreeding daylengths in male house sparrows (Passer domesticus) to test if observed seasonal changes in chronotype are directly in response to photoperiod or to testosterone. We fitted individuals with accelerometers to track activity across treatment periods. Birds experienced three treatments periods: short day photoperiods before manipulation (SD), followed by testosterone implants while still on short days (SD + T). Implants were then removed. After a decrease in cloacal protuberance size, an indicator of low testosterone levels, birds were then photostimulated on long days (LD). Blood samples were collected at night, when testosterone peaks, to compare testosterone levels to daily onset/offset activity for experimental periods. Our results indicate that experimentally elevated testosterone under short nonbreeding photoperiods significantly advanced daily onset of activity and total daily activity relative to daylength. This suggests that testosterone, independent of photoperiod, is responsible for seasonal shifts in chronotypes and daily activity rhythms. These findings suggest that sex steroid hormone actions regulate timing of daily behaviors, likely coordinating expression of reproductive behaviors to appropriate times of the day.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jez.2871\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jez.2871","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimentally Elevated Levels of Testosterone Advance Daily Onset of Activity in Short-Day Housed Male House Sparrows (Passer domesticus).
Seasonal changes in sleep/wake cycles and behaviors related to reproduction often co-occur with seasonal fluctuations in sex hormones. Experimental studies have established that fluctuations in circulating testosterone mediate circadian rhythms. However, most studies are performed under constant lighting conditions and fail to investigate the effects of testosterone on the phenotypic output of circadian rhythms, that is, chronotype (daily activity patterns under light:dark cycles). Here, we experimentally elevated testosterone with implants during short nonbreeding daylengths in male house sparrows (Passer domesticus) to test if observed seasonal changes in chronotype are directly in response to photoperiod or to testosterone. We fitted individuals with accelerometers to track activity across treatment periods. Birds experienced three treatments periods: short day photoperiods before manipulation (SD), followed by testosterone implants while still on short days (SD + T). Implants were then removed. After a decrease in cloacal protuberance size, an indicator of low testosterone levels, birds were then photostimulated on long days (LD). Blood samples were collected at night, when testosterone peaks, to compare testosterone levels to daily onset/offset activity for experimental periods. Our results indicate that experimentally elevated testosterone under short nonbreeding photoperiods significantly advanced daily onset of activity and total daily activity relative to daylength. This suggests that testosterone, independent of photoperiod, is responsible for seasonal shifts in chronotypes and daily activity rhythms. These findings suggest that sex steroid hormone actions regulate timing of daily behaviors, likely coordinating expression of reproductive behaviors to appropriate times of the day.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.