{"title":"多巴胺能神经元调控决定了草履虫在产气克雷伯氏菌感染期间的先天免疫力。","authors":"Thirumugam Gowripriya, Radhakrishnan Yashwanth, Prabhanand Bhaskar James, Ramamurthi Suresh, Krishnaswamy Balamurugan","doi":"10.1016/j.micinf.2024.105430","DOIUrl":null,"url":null,"abstract":"<p><p>The innate immune signals are the front line of host defense against bacterial pathogens. Pathogen-induced harmful effects, such as reduced neuronal signals to the intestine, affect the host's food sensing and dwelling behavior. Here, we report that dopamine and kpc-1 signals control the intestinal innate immune responses through the p38/PMK-1 MAPK signaling pathway in C. elegans. K. aerogenes infection in C. elegans affects the food-dwelling behavior, which depends on dopamine regulation. The absence of the dopamine receptor (dop-1) and transporter (dat-1) increases attraction to the pathogen instead of avoidance. The K. aerogenes infection affects age-1 regulation through the furin-like proprotein convertase (kpc-1); the absence of kpc-1 affects environment-dependent dauer formation. In contrast, the dop-1 mutation antagonistically regulates intestinal immune regulation, while the kpc-1 mutation partially regulates the p38/PMK-1 MAPK pathway. Our findings indicate that dopamine and kpc-1signaling from the nervous system control intestinal immunity in an antagonistic and agonistic manner, respectively.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dopaminergic neuronal regulation determines innate immunity of Caenorhabditis elegans during Klebsiella aerogenes infection.\",\"authors\":\"Thirumugam Gowripriya, Radhakrishnan Yashwanth, Prabhanand Bhaskar James, Ramamurthi Suresh, Krishnaswamy Balamurugan\",\"doi\":\"10.1016/j.micinf.2024.105430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The innate immune signals are the front line of host defense against bacterial pathogens. Pathogen-induced harmful effects, such as reduced neuronal signals to the intestine, affect the host's food sensing and dwelling behavior. Here, we report that dopamine and kpc-1 signals control the intestinal innate immune responses through the p38/PMK-1 MAPK signaling pathway in C. elegans. K. aerogenes infection in C. elegans affects the food-dwelling behavior, which depends on dopamine regulation. The absence of the dopamine receptor (dop-1) and transporter (dat-1) increases attraction to the pathogen instead of avoidance. The K. aerogenes infection affects age-1 regulation through the furin-like proprotein convertase (kpc-1); the absence of kpc-1 affects environment-dependent dauer formation. In contrast, the dop-1 mutation antagonistically regulates intestinal immune regulation, while the kpc-1 mutation partially regulates the p38/PMK-1 MAPK pathway. Our findings indicate that dopamine and kpc-1signaling from the nervous system control intestinal immunity in an antagonistic and agonistic manner, respectively.</p>\",\"PeriodicalId\":18497,\"journal\":{\"name\":\"Microbes and Infection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.micinf.2024.105430\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micinf.2024.105430","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Dopaminergic neuronal regulation determines innate immunity of Caenorhabditis elegans during Klebsiella aerogenes infection.
The innate immune signals are the front line of host defense against bacterial pathogens. Pathogen-induced harmful effects, such as reduced neuronal signals to the intestine, affect the host's food sensing and dwelling behavior. Here, we report that dopamine and kpc-1 signals control the intestinal innate immune responses through the p38/PMK-1 MAPK signaling pathway in C. elegans. K. aerogenes infection in C. elegans affects the food-dwelling behavior, which depends on dopamine regulation. The absence of the dopamine receptor (dop-1) and transporter (dat-1) increases attraction to the pathogen instead of avoidance. The K. aerogenes infection affects age-1 regulation through the furin-like proprotein convertase (kpc-1); the absence of kpc-1 affects environment-dependent dauer formation. In contrast, the dop-1 mutation antagonistically regulates intestinal immune regulation, while the kpc-1 mutation partially regulates the p38/PMK-1 MAPK pathway. Our findings indicate that dopamine and kpc-1signaling from the nervous system control intestinal immunity in an antagonistic and agonistic manner, respectively.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.