Nina Daniels, Aidan D. Bindoff, James C. Vickers, Anna E. King , Jessica M. Collins
{"title":"额颞叶痴呆症中神经丝表达神经元的脆弱性。","authors":"Nina Daniels, Aidan D. Bindoff, James C. Vickers, Anna E. King , Jessica M. Collins","doi":"10.1016/j.mcn.2024.103974","DOIUrl":null,"url":null,"abstract":"<div><div>Frontotemporal dementia (FTD) is an umbrella term for several early onset dementias, that are caused by frontotemporal lobar degeneration (FTLD), which involves the atrophy of the frontal and temporal lobes of the brain. Neuron loss in the frontal and temporal lobes is a characteristic feature of FTLD, however the selective vulnerability of different neuronal populations in this group of diseases is not fully understood. Neurofilament-expressing neurons have been shown to be selectively vulnerable in other neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis, therefore we sought to investigate whether this neuronal population is vulnerable in FTLD. We also examined whether neuronal sub-type vulnerability differed between FTLD with TDP-43 inclusions (FTLD-TDP) and FTLD with tau inclusions (FTLD-Tau). Post-mortem human tissue from the superior frontal gyrus (SFG) of FTLD-TDP (n = 15), FTLD-Tau (n = 8) and aged Control cases (n = 6) was immunolabelled using antibodies against non-phosphorylated neurofilaments (SMI32 antibody), calretinin and NeuN, to explore neuronal cell loss. The presence of non-phosphorylated neurofilament immunolabelling in axons of the SFG white matter was also quantified as a measure of axon pathology, as axonal neurofilaments are normally phosphorylated. We demonstrate the selective loss of neurofilament-expressing neurons in both FTLD-TDP and FTLD-Tau cases compared to aged Controls. We also show that non-phosphorylated neurofilament axonal pathology in the SFG white matter was associated with increasing age, but not FTLD. This data suggests neurofilament-expressing neurons are vulnerable in both FTLD-TDP and FTLD-Tau.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103974"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vulnerability of neurofilament-expressing neurons in frontotemporal dementia\",\"authors\":\"Nina Daniels, Aidan D. Bindoff, James C. Vickers, Anna E. King , Jessica M. Collins\",\"doi\":\"10.1016/j.mcn.2024.103974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Frontotemporal dementia (FTD) is an umbrella term for several early onset dementias, that are caused by frontotemporal lobar degeneration (FTLD), which involves the atrophy of the frontal and temporal lobes of the brain. Neuron loss in the frontal and temporal lobes is a characteristic feature of FTLD, however the selective vulnerability of different neuronal populations in this group of diseases is not fully understood. Neurofilament-expressing neurons have been shown to be selectively vulnerable in other neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis, therefore we sought to investigate whether this neuronal population is vulnerable in FTLD. We also examined whether neuronal sub-type vulnerability differed between FTLD with TDP-43 inclusions (FTLD-TDP) and FTLD with tau inclusions (FTLD-Tau). Post-mortem human tissue from the superior frontal gyrus (SFG) of FTLD-TDP (n = 15), FTLD-Tau (n = 8) and aged Control cases (n = 6) was immunolabelled using antibodies against non-phosphorylated neurofilaments (SMI32 antibody), calretinin and NeuN, to explore neuronal cell loss. The presence of non-phosphorylated neurofilament immunolabelling in axons of the SFG white matter was also quantified as a measure of axon pathology, as axonal neurofilaments are normally phosphorylated. We demonstrate the selective loss of neurofilament-expressing neurons in both FTLD-TDP and FTLD-Tau cases compared to aged Controls. We also show that non-phosphorylated neurofilament axonal pathology in the SFG white matter was associated with increasing age, but not FTLD. This data suggests neurofilament-expressing neurons are vulnerable in both FTLD-TDP and FTLD-Tau.</div></div>\",\"PeriodicalId\":18739,\"journal\":{\"name\":\"Molecular and Cellular Neuroscience\",\"volume\":\"131 \",\"pages\":\"Article 103974\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044743124000599\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044743124000599","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Vulnerability of neurofilament-expressing neurons in frontotemporal dementia
Frontotemporal dementia (FTD) is an umbrella term for several early onset dementias, that are caused by frontotemporal lobar degeneration (FTLD), which involves the atrophy of the frontal and temporal lobes of the brain. Neuron loss in the frontal and temporal lobes is a characteristic feature of FTLD, however the selective vulnerability of different neuronal populations in this group of diseases is not fully understood. Neurofilament-expressing neurons have been shown to be selectively vulnerable in other neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis, therefore we sought to investigate whether this neuronal population is vulnerable in FTLD. We also examined whether neuronal sub-type vulnerability differed between FTLD with TDP-43 inclusions (FTLD-TDP) and FTLD with tau inclusions (FTLD-Tau). Post-mortem human tissue from the superior frontal gyrus (SFG) of FTLD-TDP (n = 15), FTLD-Tau (n = 8) and aged Control cases (n = 6) was immunolabelled using antibodies against non-phosphorylated neurofilaments (SMI32 antibody), calretinin and NeuN, to explore neuronal cell loss. The presence of non-phosphorylated neurofilament immunolabelling in axons of the SFG white matter was also quantified as a measure of axon pathology, as axonal neurofilaments are normally phosphorylated. We demonstrate the selective loss of neurofilament-expressing neurons in both FTLD-TDP and FTLD-Tau cases compared to aged Controls. We also show that non-phosphorylated neurofilament axonal pathology in the SFG white matter was associated with increasing age, but not FTLD. This data suggests neurofilament-expressing neurons are vulnerable in both FTLD-TDP and FTLD-Tau.
期刊介绍:
Molecular and Cellular Neuroscience publishes original research of high significance covering all aspects of neurosciences indicated by the broadest interpretation of the journal''s title. In particular, the journal focuses on synaptic maintenance, de- and re-organization, neuron-glia communication, and de-/regenerative neurobiology. In addition, studies using animal models of disease with translational prospects and experimental approaches with backward validation of disease signatures from human patients are welcome.