Stefanie Tasevski , Hwa Kyung Nam , Amanda Ghannam , Sara Moughni , Tia Atoui , Yara Mashal , Nan Hatch , Zhi Zhang
{"title":"组织非特异性碱性磷酸酶缺乏症会损害小鼠模型中的浦肯野细胞发育和存活。","authors":"Stefanie Tasevski , Hwa Kyung Nam , Amanda Ghannam , Sara Moughni , Tia Atoui , Yara Mashal , Nan Hatch , Zhi Zhang","doi":"10.1016/j.neuroscience.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>Loss-of-function mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in hypophosphatasia (HPP), an inherited multi-systemic metabolic disorder that is well-known for skeletal and dental hypomineralization. However, emerging evidence shows that both adult and pediatric patients with HPP suffer from cognitive deficits, higher measures of depression and anxiety, and impaired sensorimotor skills. The cerebellum plays an important role in sensorimotor coordination, cognition, and emotion. To date, the impact of TNAP mutation on the cerebellar circuitry development and function remains poorly understood. The main objective of this study was to investigate the roles of TNAP in cerebellar development and function, with a particular focus on Purkinje cells, in a mouse model of infantile HPP. Male and female wild type (WT) and TNAP knockout (KO) mice underwent behavioral testing on postnatal day 13–14 and were euthanized after completion of behavioral tests. Cerebellar tissues were harvested for gene expression and immunohistochemistry analyses. We found that TNAP mutation resulted in significantly reduced body weight, shorter body length, and impaired sensorimotor functions in both male and female KO mice. These developmental and behavioral deficits were accompanied by abnormal Purkinje cell morphology and dysregulation of genes that regulates synaptic transmission, cellular growth, proliferation, and death. In conclusion, inactivation of TNAP via gene deletion causes developmental delays, sensorimotor impairment, and Purkinje cell maldevelopment. These results shed light on a new perspective of cerebellar dysfunction in HPP.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tissue nonspecific alkaline phosphatase deficiency impairs Purkinje cell development and survival in a mouse model of infantile hypophosphatasia\",\"authors\":\"Stefanie Tasevski , Hwa Kyung Nam , Amanda Ghannam , Sara Moughni , Tia Atoui , Yara Mashal , Nan Hatch , Zhi Zhang\",\"doi\":\"10.1016/j.neuroscience.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Loss-of-function mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in hypophosphatasia (HPP), an inherited multi-systemic metabolic disorder that is well-known for skeletal and dental hypomineralization. However, emerging evidence shows that both adult and pediatric patients with HPP suffer from cognitive deficits, higher measures of depression and anxiety, and impaired sensorimotor skills. The cerebellum plays an important role in sensorimotor coordination, cognition, and emotion. To date, the impact of TNAP mutation on the cerebellar circuitry development and function remains poorly understood. The main objective of this study was to investigate the roles of TNAP in cerebellar development and function, with a particular focus on Purkinje cells, in a mouse model of infantile HPP. Male and female wild type (WT) and TNAP knockout (KO) mice underwent behavioral testing on postnatal day 13–14 and were euthanized after completion of behavioral tests. Cerebellar tissues were harvested for gene expression and immunohistochemistry analyses. We found that TNAP mutation resulted in significantly reduced body weight, shorter body length, and impaired sensorimotor functions in both male and female KO mice. These developmental and behavioral deficits were accompanied by abnormal Purkinje cell morphology and dysregulation of genes that regulates synaptic transmission, cellular growth, proliferation, and death. In conclusion, inactivation of TNAP via gene deletion causes developmental delays, sensorimotor impairment, and Purkinje cell maldevelopment. These results shed light on a new perspective of cerebellar dysfunction in HPP.</div></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452224005086\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452224005086","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Tissue nonspecific alkaline phosphatase deficiency impairs Purkinje cell development and survival in a mouse model of infantile hypophosphatasia
Loss-of-function mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in hypophosphatasia (HPP), an inherited multi-systemic metabolic disorder that is well-known for skeletal and dental hypomineralization. However, emerging evidence shows that both adult and pediatric patients with HPP suffer from cognitive deficits, higher measures of depression and anxiety, and impaired sensorimotor skills. The cerebellum plays an important role in sensorimotor coordination, cognition, and emotion. To date, the impact of TNAP mutation on the cerebellar circuitry development and function remains poorly understood. The main objective of this study was to investigate the roles of TNAP in cerebellar development and function, with a particular focus on Purkinje cells, in a mouse model of infantile HPP. Male and female wild type (WT) and TNAP knockout (KO) mice underwent behavioral testing on postnatal day 13–14 and were euthanized after completion of behavioral tests. Cerebellar tissues were harvested for gene expression and immunohistochemistry analyses. We found that TNAP mutation resulted in significantly reduced body weight, shorter body length, and impaired sensorimotor functions in both male and female KO mice. These developmental and behavioral deficits were accompanied by abnormal Purkinje cell morphology and dysregulation of genes that regulates synaptic transmission, cellular growth, proliferation, and death. In conclusion, inactivation of TNAP via gene deletion causes developmental delays, sensorimotor impairment, and Purkinje cell maldevelopment. These results shed light on a new perspective of cerebellar dysfunction in HPP.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.