Xin Wang, Jiaxin Liu, Erlei Shang, Amangul Hawar, Toshiro Ito, Bo Sun
{"title":"类芸香素信号抑制 ZINC FINGER PROTEIN11 以调节拟南芥的胚珠发育。","authors":"Xin Wang, Jiaxin Liu, Erlei Shang, Amangul Hawar, Toshiro Ito, Bo Sun","doi":"10.1093/plcell/koae273","DOIUrl":null,"url":null,"abstract":"<p><p>Brassinosteroid (BR) signaling and the C-class MADS-box gene AGAMOUS (AG) play important roles in ovule development in Arabidopsis (Arabidopsis thaliana). However, how BR signaling integrates with AG functions to control the female reproductive process remains elusive. Here, we showed that the regulatory role of BR signaling in proper ovule development is mediated by the transcriptional repressor gene ZINC FINGER PROTEIN 11 (ZFP11), which is a direct target of AG. ZFP11 expression initiates from the placenta upon AG induction and becomes prominent in the funiculus of ovule primordia. Plants harboring zfp11 mutations showed reduced placental length with decreased ovule numbers and some aborted ovules. During ovule development, the transcription factor BRASSINAZOLE-RESISTANT 1 (BZR1), which functions downstream of BR signaling, inhibits ZFP11 expression in the chalaza and nucellus. Weakened BR signaling leads to stunted integuments in ovules, resulting from the direct repression of INNER NO OUTER (INO) and WUSCHEL (WUS) by extended ZFP11 expression in the chalaza and nucellus, respectively. In addition, the zfp11 mutant shows reduced sensitivity to BR biosynthesis inhibitors and can rescue outer integument defects in brassinosteroid insensitive 1 (bri1) mutants. Thus, the precise spatial regulation of ZFP11, which is activated by AG in the placenta and suppressed by BR signaling in the central and distal regions of ovules, is essential for ensuring sufficient ovule numbers and proper ovule formation.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brassinosteroid signaling represses ZINC FINGER PROTEIN11 to regulate ovule development in Arabidopsis.\",\"authors\":\"Xin Wang, Jiaxin Liu, Erlei Shang, Amangul Hawar, Toshiro Ito, Bo Sun\",\"doi\":\"10.1093/plcell/koae273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brassinosteroid (BR) signaling and the C-class MADS-box gene AGAMOUS (AG) play important roles in ovule development in Arabidopsis (Arabidopsis thaliana). However, how BR signaling integrates with AG functions to control the female reproductive process remains elusive. Here, we showed that the regulatory role of BR signaling in proper ovule development is mediated by the transcriptional repressor gene ZINC FINGER PROTEIN 11 (ZFP11), which is a direct target of AG. ZFP11 expression initiates from the placenta upon AG induction and becomes prominent in the funiculus of ovule primordia. Plants harboring zfp11 mutations showed reduced placental length with decreased ovule numbers and some aborted ovules. During ovule development, the transcription factor BRASSINAZOLE-RESISTANT 1 (BZR1), which functions downstream of BR signaling, inhibits ZFP11 expression in the chalaza and nucellus. Weakened BR signaling leads to stunted integuments in ovules, resulting from the direct repression of INNER NO OUTER (INO) and WUSCHEL (WUS) by extended ZFP11 expression in the chalaza and nucellus, respectively. In addition, the zfp11 mutant shows reduced sensitivity to BR biosynthesis inhibitors and can rescue outer integument defects in brassinosteroid insensitive 1 (bri1) mutants. Thus, the precise spatial regulation of ZFP11, which is activated by AG in the placenta and suppressed by BR signaling in the central and distal regions of ovules, is essential for ensuring sufficient ovule numbers and proper ovule formation.</p>\",\"PeriodicalId\":20186,\"journal\":{\"name\":\"Plant Cell\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae273\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae273","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
类芸香苷(BR)信号和 C 级 MADS-box 基因 AGAMOUS(AG)在拟南芥(Arabidopsis thaliana)胚珠发育过程中发挥着重要作用。然而,BR 信号如何与 AG 功能相结合以控制雌性生殖过程仍是一个未知数。在这里,我们发现,BR 信号在胚珠正常发育过程中的调控作用是由转录抑制基因 ZINC FINGER PROTEIN 11(ZFP11)介导的,而 ZFP11 是 AG 的直接靶标。ZFP11 的表达在 AG 诱导时从胎座开始,并在胚珠原基的漏斗部变得突出。携带 zfp11 基因突变的植株胎盘长度缩短,胚珠数量减少,部分胚珠流产。在胚珠发育过程中,BR 信号转导下游的转录因子 BRASSINAZOLE-RESISTANT 1(BZR1)会抑制 ZFP11 在子房和核部的表达。BR信号的减弱导致胚珠中的整粒发育不良,这是因为ZFP11在颖果和核果中的延长表达分别直接抑制了INNER NO OUTER(INO)和WUSCHEL(WUS)。此外,zfp11突变体对BR生物合成抑制剂的敏感性降低,并能挽救黄铜类固醇不敏感1(bri1)突变体的外被膜缺陷。因此,ZFP11在胎盘中被AG激活,在胚珠的中央和远端区域被BR信号抑制,其精确的空间调控对于确保足够的胚珠数量和适当的胚珠形成至关重要。
Brassinosteroid signaling represses ZINC FINGER PROTEIN11 to regulate ovule development in Arabidopsis.
Brassinosteroid (BR) signaling and the C-class MADS-box gene AGAMOUS (AG) play important roles in ovule development in Arabidopsis (Arabidopsis thaliana). However, how BR signaling integrates with AG functions to control the female reproductive process remains elusive. Here, we showed that the regulatory role of BR signaling in proper ovule development is mediated by the transcriptional repressor gene ZINC FINGER PROTEIN 11 (ZFP11), which is a direct target of AG. ZFP11 expression initiates from the placenta upon AG induction and becomes prominent in the funiculus of ovule primordia. Plants harboring zfp11 mutations showed reduced placental length with decreased ovule numbers and some aborted ovules. During ovule development, the transcription factor BRASSINAZOLE-RESISTANT 1 (BZR1), which functions downstream of BR signaling, inhibits ZFP11 expression in the chalaza and nucellus. Weakened BR signaling leads to stunted integuments in ovules, resulting from the direct repression of INNER NO OUTER (INO) and WUSCHEL (WUS) by extended ZFP11 expression in the chalaza and nucellus, respectively. In addition, the zfp11 mutant shows reduced sensitivity to BR biosynthesis inhibitors and can rescue outer integument defects in brassinosteroid insensitive 1 (bri1) mutants. Thus, the precise spatial regulation of ZFP11, which is activated by AG in the placenta and suppressed by BR signaling in the central and distal regions of ovules, is essential for ensuring sufficient ovule numbers and proper ovule formation.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.