DeepCOVIDNet-CXR:在增强型胸部 X 光片上识别 COVID-19 的深度学习策略。

Gokhan Altan, Süleyman Serhan Narli
{"title":"DeepCOVIDNet-CXR:在增强型胸部 X 光片上识别 COVID-19 的深度学习策略。","authors":"Gokhan Altan, Süleyman Serhan Narli","doi":"10.1515/bmt-2021-0272","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>COVID-19 is one of the recent major epidemics, which accelerates its mortality and prevalence worldwide. Most literature on chest X-ray-based COVID-19 analysis has focused on multi-case classification (COVID-19, pneumonia, and normal) by the advantages of Deep Learning. However, the limited number of chest X-rays with COVID-19 is a prominent deficiency for clinical relevance. This study aims at evaluating COVID-19 identification performances using adaptive histogram equalization (AHE) to feed the ConvNet architectures with reliable lung anatomy of airways.</p><p><strong>Methods: </strong>We experimented with balanced small- and large-scale COVID-19 databases using left lung, right lung, and complete chest X-rays with various AHE parameters. On multiple strategies, we applied transfer learning on four ConvNet architectures (MobileNet, DarkNet19, VGG16, and AlexNet).</p><p><strong>Results: </strong>Whereas DarkNet19 reached the highest multi-case identification performance with an accuracy rate of 98.26 % on the small-scale dataset, VGG16 achieved the best generalization performance with an accuracy rate of 95.04 % on the large-scale dataset.</p><p><strong>Conclusions: </strong>Our study is one of the pioneering approaches that analyses 3615 COVID-19 cases and specifies the most responsible AHE parameters for ConvNet architectures in the multi-case classification.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepCOVIDNet-CXR: deep learning strategies for identifying COVID-19 on enhanced chest X-rays.\",\"authors\":\"Gokhan Altan, Süleyman Serhan Narli\",\"doi\":\"10.1515/bmt-2021-0272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>COVID-19 is one of the recent major epidemics, which accelerates its mortality and prevalence worldwide. Most literature on chest X-ray-based COVID-19 analysis has focused on multi-case classification (COVID-19, pneumonia, and normal) by the advantages of Deep Learning. However, the limited number of chest X-rays with COVID-19 is a prominent deficiency for clinical relevance. This study aims at evaluating COVID-19 identification performances using adaptive histogram equalization (AHE) to feed the ConvNet architectures with reliable lung anatomy of airways.</p><p><strong>Methods: </strong>We experimented with balanced small- and large-scale COVID-19 databases using left lung, right lung, and complete chest X-rays with various AHE parameters. On multiple strategies, we applied transfer learning on four ConvNet architectures (MobileNet, DarkNet19, VGG16, and AlexNet).</p><p><strong>Results: </strong>Whereas DarkNet19 reached the highest multi-case identification performance with an accuracy rate of 98.26 % on the small-scale dataset, VGG16 achieved the best generalization performance with an accuracy rate of 95.04 % on the large-scale dataset.</p><p><strong>Conclusions: </strong>Our study is one of the pioneering approaches that analyses 3615 COVID-19 cases and specifies the most responsible AHE parameters for ConvNet architectures in the multi-case classification.</p>\",\"PeriodicalId\":93905,\"journal\":{\"name\":\"Biomedizinische Technik. Biomedical engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedizinische Technik. Biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2021-0272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2021-0272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:COVID-19 是近年来的主要流行病之一,它在全球范围内加速了死亡率和流行率。大多数基于胸部 X 光片的 COVID-19 分析文献都侧重于利用深度学习的优势进行多病例分类(COVID-19、肺炎和正常)。然而,具有 COVID-19 的胸部 X 光片数量有限,这是临床相关性的一个突出缺陷。本研究旨在利用自适应直方图均衡化(AHE)评估 COVID-19 识别性能,为 ConvNet 架构提供可靠的气道肺部解剖信息:我们使用平衡的小型和大型 COVID-19 数据库,使用左肺、右肺和完整胸部 X 光片,并使用不同的 AHE 参数进行了实验。通过多种策略,我们在四种 ConvNet 架构(MobileNet、DarkNet19、VGG16 和 AlexNet)上应用了迁移学习:结果:在小规模数据集上,DarkNet19 的多病例识别性能最高,准确率达 98.26%;在大规模数据集上,VGG16 的泛化性能最好,准确率达 95.04%:我们的研究是分析 3615 个 COVID-19 案例并确定 ConvNet 架构在多案例分类中最适合的 AHE 参数的开创性方法之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepCOVIDNet-CXR: deep learning strategies for identifying COVID-19 on enhanced chest X-rays.

Objectives: COVID-19 is one of the recent major epidemics, which accelerates its mortality and prevalence worldwide. Most literature on chest X-ray-based COVID-19 analysis has focused on multi-case classification (COVID-19, pneumonia, and normal) by the advantages of Deep Learning. However, the limited number of chest X-rays with COVID-19 is a prominent deficiency for clinical relevance. This study aims at evaluating COVID-19 identification performances using adaptive histogram equalization (AHE) to feed the ConvNet architectures with reliable lung anatomy of airways.

Methods: We experimented with balanced small- and large-scale COVID-19 databases using left lung, right lung, and complete chest X-rays with various AHE parameters. On multiple strategies, we applied transfer learning on four ConvNet architectures (MobileNet, DarkNet19, VGG16, and AlexNet).

Results: Whereas DarkNet19 reached the highest multi-case identification performance with an accuracy rate of 98.26 % on the small-scale dataset, VGG16 achieved the best generalization performance with an accuracy rate of 95.04 % on the large-scale dataset.

Conclusions: Our study is one of the pioneering approaches that analyses 3615 COVID-19 cases and specifies the most responsible AHE parameters for ConvNet architectures in the multi-case classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recognition analysis of spiral and straight-line drawings in tremor assessment. A type-2 fuzzy inference-based approach enables walking speed estimation that adapts to inter-individual gait patterns. Hydrogel promotes bone regeneration through various mechanisms: a review. Combination of edge enhancement and cold diffusion model for low dose CT image denoising. Prediction of muscular-invasive bladder cancer using multi-view fusion self-distillation model based on 3D T2-Weighted images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1