{"title":"通过机器学习识别 GspE 的递归动态抑制剂。","authors":"Aliza Naz, Fouzia Gul, Syed Sikander Azam","doi":"10.1016/j.compbiolchem.2024.108217","DOIUrl":null,"url":null,"abstract":"<div><div>Type II secretion System has been increasingly recognized as a key driver of virulence in many pathogenic bacteria including <em>Achromobacter xylosoxidans</em>. ATPase GspE is the powerhouse of the T2SS. It powers the entire secretion process by binding with ATP and hydrolyzing it. Therefore, targeting it was thought to have a profound effect on the normal functioning of the whole T2SS. <em>A. xylosoxidans</em> is a Gram-negative bacterium that poses a rising concern to immunocompromised people. It is responsible for many opportunistic infections mostly in people with cystic fibrosis. Due to its intrinsic and acquired resistance mechanisms, it is challenging to treat. In this current study, an extensive machine learning-enabled computational investigation was carried out. Drug libraries were screened using machine learning random forest algorithm trained on non-redundant dataset of 8722 antibacterial compounds with reported IC<sub>50</sub> values. Active compounds were then further subjected to molecular docking. To unravel the dynamics and better understand the stability of complexes, the top complexes were subjected to MD Simulations followed by various post-simulation analyses including Trajectory analysis, Atom Contacts, SASA, Hydrogen Bond, RDF, binding free energy calculations, PCA, and AFD analysis. Findings from the study unanimously unveiled Asinex-BAS00263070–28551 as the best inhibitor as it instigated the recursive dynamics of the target by making key hydrogen bond interactions with Walker A motif, suggesting it could serve as the promising drug candidate against GspE. Further experimental in-vivo and in-vitro validation is still required to authenticate the therapeutic effects of these drugs.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108217"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recursive dynamics of GspE through machine learning enabled identification of inhibitors\",\"authors\":\"Aliza Naz, Fouzia Gul, Syed Sikander Azam\",\"doi\":\"10.1016/j.compbiolchem.2024.108217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Type II secretion System has been increasingly recognized as a key driver of virulence in many pathogenic bacteria including <em>Achromobacter xylosoxidans</em>. ATPase GspE is the powerhouse of the T2SS. It powers the entire secretion process by binding with ATP and hydrolyzing it. Therefore, targeting it was thought to have a profound effect on the normal functioning of the whole T2SS. <em>A. xylosoxidans</em> is a Gram-negative bacterium that poses a rising concern to immunocompromised people. It is responsible for many opportunistic infections mostly in people with cystic fibrosis. Due to its intrinsic and acquired resistance mechanisms, it is challenging to treat. In this current study, an extensive machine learning-enabled computational investigation was carried out. Drug libraries were screened using machine learning random forest algorithm trained on non-redundant dataset of 8722 antibacterial compounds with reported IC<sub>50</sub> values. Active compounds were then further subjected to molecular docking. To unravel the dynamics and better understand the stability of complexes, the top complexes were subjected to MD Simulations followed by various post-simulation analyses including Trajectory analysis, Atom Contacts, SASA, Hydrogen Bond, RDF, binding free energy calculations, PCA, and AFD analysis. Findings from the study unanimously unveiled Asinex-BAS00263070–28551 as the best inhibitor as it instigated the recursive dynamics of the target by making key hydrogen bond interactions with Walker A motif, suggesting it could serve as the promising drug candidate against GspE. Further experimental in-vivo and in-vitro validation is still required to authenticate the therapeutic effects of these drugs.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"113 \",\"pages\":\"Article 108217\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124002056\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002056","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Recursive dynamics of GspE through machine learning enabled identification of inhibitors
Type II secretion System has been increasingly recognized as a key driver of virulence in many pathogenic bacteria including Achromobacter xylosoxidans. ATPase GspE is the powerhouse of the T2SS. It powers the entire secretion process by binding with ATP and hydrolyzing it. Therefore, targeting it was thought to have a profound effect on the normal functioning of the whole T2SS. A. xylosoxidans is a Gram-negative bacterium that poses a rising concern to immunocompromised people. It is responsible for many opportunistic infections mostly in people with cystic fibrosis. Due to its intrinsic and acquired resistance mechanisms, it is challenging to treat. In this current study, an extensive machine learning-enabled computational investigation was carried out. Drug libraries were screened using machine learning random forest algorithm trained on non-redundant dataset of 8722 antibacterial compounds with reported IC50 values. Active compounds were then further subjected to molecular docking. To unravel the dynamics and better understand the stability of complexes, the top complexes were subjected to MD Simulations followed by various post-simulation analyses including Trajectory analysis, Atom Contacts, SASA, Hydrogen Bond, RDF, binding free energy calculations, PCA, and AFD analysis. Findings from the study unanimously unveiled Asinex-BAS00263070–28551 as the best inhibitor as it instigated the recursive dynamics of the target by making key hydrogen bond interactions with Walker A motif, suggesting it could serve as the promising drug candidate against GspE. Further experimental in-vivo and in-vitro validation is still required to authenticate the therapeutic effects of these drugs.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.