Jianchen Zhang, Yu Liu, Ying Guan and Yongjun Zhang
{"title":"一次性注射疫苗,可预防两种 HPV 类型。","authors":"Jianchen Zhang, Yu Liu, Ying Guan and Yongjun Zhang","doi":"10.1039/D4TB00606B","DOIUrl":null,"url":null,"abstract":"<p >Prophylactic human papillomavirus (HPV) vaccines against cervical cancer were successfully developed; however, challenges such as high cost and low compliance still remain to be overcome. In addition, because many HPV types can cause cervical cancer, antigens of multiple HPV types are needed to achieve broad protection. In this study, a bivalent single-injection HPV vaccine was designed in which virus-like particles (VLPs) of HPV 16 L1 and HPV 18 L1 were used as antigens. A recently developed drug carrier that uses tannic acid/polyethylene glycol films as the erodible layer was employed to accomplish multiple pulsatile releases of the antigens. Monovalent single-injection vaccines for HPV 16 and HPV 18 were first designed. A bivalent single-injection vaccine was then obtained by simply mixing the two monovalent vaccines. The bivalent vaccine provided protection against both HPV types. More importantly, it elicited both humoral and cellular immune responses as potent as those elicited by the corresponding multiple dose vaccine because of their similar release profile of antigens. Cross-reactivity was observed between HPV 16 and 18 in terms of cellular immune responses, while no cross-reactivity was found in terms of humoral immune responses. Note that other multivalent single-injection vaccines could be designed in the same way. These vaccines are expected to help prevent cervical cancer because of their broad protection, enhanced compliance and lowered vaccination cost.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 43","pages":" 11237-11250"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A single-injection vaccine providing protection against two HPV types†\",\"authors\":\"Jianchen Zhang, Yu Liu, Ying Guan and Yongjun Zhang\",\"doi\":\"10.1039/D4TB00606B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Prophylactic human papillomavirus (HPV) vaccines against cervical cancer were successfully developed; however, challenges such as high cost and low compliance still remain to be overcome. In addition, because many HPV types can cause cervical cancer, antigens of multiple HPV types are needed to achieve broad protection. In this study, a bivalent single-injection HPV vaccine was designed in which virus-like particles (VLPs) of HPV 16 L1 and HPV 18 L1 were used as antigens. A recently developed drug carrier that uses tannic acid/polyethylene glycol films as the erodible layer was employed to accomplish multiple pulsatile releases of the antigens. Monovalent single-injection vaccines for HPV 16 and HPV 18 were first designed. A bivalent single-injection vaccine was then obtained by simply mixing the two monovalent vaccines. The bivalent vaccine provided protection against both HPV types. More importantly, it elicited both humoral and cellular immune responses as potent as those elicited by the corresponding multiple dose vaccine because of their similar release profile of antigens. Cross-reactivity was observed between HPV 16 and 18 in terms of cellular immune responses, while no cross-reactivity was found in terms of humoral immune responses. Note that other multivalent single-injection vaccines could be designed in the same way. These vaccines are expected to help prevent cervical cancer because of their broad protection, enhanced compliance and lowered vaccination cost.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 43\",\"pages\":\" 11237-11250\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00606b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00606b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A single-injection vaccine providing protection against two HPV types†
Prophylactic human papillomavirus (HPV) vaccines against cervical cancer were successfully developed; however, challenges such as high cost and low compliance still remain to be overcome. In addition, because many HPV types can cause cervical cancer, antigens of multiple HPV types are needed to achieve broad protection. In this study, a bivalent single-injection HPV vaccine was designed in which virus-like particles (VLPs) of HPV 16 L1 and HPV 18 L1 were used as antigens. A recently developed drug carrier that uses tannic acid/polyethylene glycol films as the erodible layer was employed to accomplish multiple pulsatile releases of the antigens. Monovalent single-injection vaccines for HPV 16 and HPV 18 were first designed. A bivalent single-injection vaccine was then obtained by simply mixing the two monovalent vaccines. The bivalent vaccine provided protection against both HPV types. More importantly, it elicited both humoral and cellular immune responses as potent as those elicited by the corresponding multiple dose vaccine because of their similar release profile of antigens. Cross-reactivity was observed between HPV 16 and 18 in terms of cellular immune responses, while no cross-reactivity was found in terms of humoral immune responses. Note that other multivalent single-injection vaccines could be designed in the same way. These vaccines are expected to help prevent cervical cancer because of their broad protection, enhanced compliance and lowered vaccination cost.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices