{"title":"用于引导骨再生的包含类人细胞外基质胶原的多孔膜的规模化制造。","authors":"Qingyi Wang, Feng Zhou, Tiecheng Qiu, Yiling Liu, Wenxin Luo, Zhanqi Wang, Haiyun Li, E. Xiao, Qiang Wei and Yingying Wu","doi":"10.1039/D4TB00962B","DOIUrl":null,"url":null,"abstract":"<p >Guided bone regeneration (GBR) is an extensively used technique for the treatment of maxillofacial bone defects and bone mass deficiency in clinical practice. However, to date, studies on membranes for GBR have not achieved the combination of suitable properties and cost-effective membrane production. Herein, we developed a polycaprolactone/human extracellular matrix-like collagen (PCL/hCol) membrane with an asymmetric porous structure <em>via</em> the nonsolvent-induced phase separation (NIPS) method, which is a highly efficient procedure with simple operation, scalable fabrication and low cost. This membrane possessed a porous rough surface, which is conducive to cell attachment and proliferation for guiding osteogenesis, together with a relatively smooth surface with micropores, which allows the passage of nutrients and is unfavorable for the adhesion of cells, thus preventing fibroblast invasion and overall meeting the demands for GBR. Besides, we evaluated the characteristics and biological properties of the membrane and compared them with those of commercially available membranes. Results showed that the PCL/hCol membrane exhibited excellent mechanical properties, degradation characteristics, barrier function, biocompatibility and osteoinductive potential. Furthermore, our <em>in vivo</em> study demonstrated the promotive effect of the PCL/hCol membrane on bone formation in rat calvarial defects. Taken together, our NIPS-prepared PCL/hCol membrane with promising properties and production advantages offers a new perspective for its development and potential use in GBR application.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 43","pages":" 11142-11155"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable fabrication of porous membrane incorporating human extracellular matrix-like collagen for guided bone regeneration†\",\"authors\":\"Qingyi Wang, Feng Zhou, Tiecheng Qiu, Yiling Liu, Wenxin Luo, Zhanqi Wang, Haiyun Li, E. Xiao, Qiang Wei and Yingying Wu\",\"doi\":\"10.1039/D4TB00962B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Guided bone regeneration (GBR) is an extensively used technique for the treatment of maxillofacial bone defects and bone mass deficiency in clinical practice. However, to date, studies on membranes for GBR have not achieved the combination of suitable properties and cost-effective membrane production. Herein, we developed a polycaprolactone/human extracellular matrix-like collagen (PCL/hCol) membrane with an asymmetric porous structure <em>via</em> the nonsolvent-induced phase separation (NIPS) method, which is a highly efficient procedure with simple operation, scalable fabrication and low cost. This membrane possessed a porous rough surface, which is conducive to cell attachment and proliferation for guiding osteogenesis, together with a relatively smooth surface with micropores, which allows the passage of nutrients and is unfavorable for the adhesion of cells, thus preventing fibroblast invasion and overall meeting the demands for GBR. Besides, we evaluated the characteristics and biological properties of the membrane and compared them with those of commercially available membranes. Results showed that the PCL/hCol membrane exhibited excellent mechanical properties, degradation characteristics, barrier function, biocompatibility and osteoinductive potential. Furthermore, our <em>in vivo</em> study demonstrated the promotive effect of the PCL/hCol membrane on bone formation in rat calvarial defects. Taken together, our NIPS-prepared PCL/hCol membrane with promising properties and production advantages offers a new perspective for its development and potential use in GBR application.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 43\",\"pages\":\" 11142-11155\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00962b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00962b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Scalable fabrication of porous membrane incorporating human extracellular matrix-like collagen for guided bone regeneration†
Guided bone regeneration (GBR) is an extensively used technique for the treatment of maxillofacial bone defects and bone mass deficiency in clinical practice. However, to date, studies on membranes for GBR have not achieved the combination of suitable properties and cost-effective membrane production. Herein, we developed a polycaprolactone/human extracellular matrix-like collagen (PCL/hCol) membrane with an asymmetric porous structure via the nonsolvent-induced phase separation (NIPS) method, which is a highly efficient procedure with simple operation, scalable fabrication and low cost. This membrane possessed a porous rough surface, which is conducive to cell attachment and proliferation for guiding osteogenesis, together with a relatively smooth surface with micropores, which allows the passage of nutrients and is unfavorable for the adhesion of cells, thus preventing fibroblast invasion and overall meeting the demands for GBR. Besides, we evaluated the characteristics and biological properties of the membrane and compared them with those of commercially available membranes. Results showed that the PCL/hCol membrane exhibited excellent mechanical properties, degradation characteristics, barrier function, biocompatibility and osteoinductive potential. Furthermore, our in vivo study demonstrated the promotive effect of the PCL/hCol membrane on bone formation in rat calvarial defects. Taken together, our NIPS-prepared PCL/hCol membrane with promising properties and production advantages offers a new perspective for its development and potential use in GBR application.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices