基于扩散增强和姿势生成的预训练方法,用于可靠的可见光-红外人员再识别

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-09-23 DOI:10.1109/LSP.2024.3466792
Rui Sun;Guoxi Huang;Ruirui Xie;Xuebin Wang;Long Chen
{"title":"基于扩散增强和姿势生成的预训练方法,用于可靠的可见光-红外人员再识别","authors":"Rui Sun;Guoxi Huang;Ruirui Xie;Xuebin Wang;Long Chen","doi":"10.1109/LSP.2024.3466792","DOIUrl":null,"url":null,"abstract":"Cross-Modal Visible-Infrared Person Re-identification (VI-REID) constitutes a vital application for constructing all-time surveillance systems. However, the current VI-REID model exhibits significant performance deterioration in noisy environments. Existing algorithms endeavor to mitigate this challenge through fine-tuning stages. We contend that, in contrast to fine-tuning stages, the pre-training phase can effectively exploit the attributes of extensive unlabeled data, thereby facilitating the development of a robust VI-REID model. Therefore, in this paper, we propose a pre-training method for VI-REID based on Diffusion Augmentation and Pose Generation (DAPG), aiming to enhance the robustness and recognition rate of VI-REID models in the presence of damaged scenes. Multiple transfer experiments on the SYSU-MM01 and RegDB datasets demonstrate that our method outperforms existing self-supervised methods, as evidenced by the results.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2670-2674"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion Augmentation and Pose Generation Based Pre-Training Method for Robust Visible-Infrared Person Re-Identification\",\"authors\":\"Rui Sun;Guoxi Huang;Ruirui Xie;Xuebin Wang;Long Chen\",\"doi\":\"10.1109/LSP.2024.3466792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-Modal Visible-Infrared Person Re-identification (VI-REID) constitutes a vital application for constructing all-time surveillance systems. However, the current VI-REID model exhibits significant performance deterioration in noisy environments. Existing algorithms endeavor to mitigate this challenge through fine-tuning stages. We contend that, in contrast to fine-tuning stages, the pre-training phase can effectively exploit the attributes of extensive unlabeled data, thereby facilitating the development of a robust VI-REID model. Therefore, in this paper, we propose a pre-training method for VI-REID based on Diffusion Augmentation and Pose Generation (DAPG), aiming to enhance the robustness and recognition rate of VI-REID models in the presence of damaged scenes. Multiple transfer experiments on the SYSU-MM01 and RegDB datasets demonstrate that our method outperforms existing self-supervised methods, as evidenced by the results.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"2670-2674\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10689388/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10689388/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

跨模态可见光-红外人员再识别(VI-REID)是构建全时监控系统的一项重要应用。然而,当前的 VI-REID 模型在嘈杂环境中表现出明显的性能下降。现有算法试图通过微调阶段来缓解这一挑战。我们认为,与微调阶段不同,预训练阶段可以有效利用大量未标记数据的属性,从而促进稳健的 VI-REID 模型的开发。因此,本文提出了一种基于扩散增强和姿态生成(DAPG)的VI-REID预训练方法,旨在提高VI-REID模型在受损场景下的鲁棒性和识别率。在SYSU-MM01和RegDB数据集上进行的多次转移实验证明,我们的方法优于现有的自监督方法,这一点从结果中可见一斑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diffusion Augmentation and Pose Generation Based Pre-Training Method for Robust Visible-Infrared Person Re-Identification
Cross-Modal Visible-Infrared Person Re-identification (VI-REID) constitutes a vital application for constructing all-time surveillance systems. However, the current VI-REID model exhibits significant performance deterioration in noisy environments. Existing algorithms endeavor to mitigate this challenge through fine-tuning stages. We contend that, in contrast to fine-tuning stages, the pre-training phase can effectively exploit the attributes of extensive unlabeled data, thereby facilitating the development of a robust VI-REID model. Therefore, in this paper, we propose a pre-training method for VI-REID based on Diffusion Augmentation and Pose Generation (DAPG), aiming to enhance the robustness and recognition rate of VI-REID models in the presence of damaged scenes. Multiple transfer experiments on the SYSU-MM01 and RegDB datasets demonstrate that our method outperforms existing self-supervised methods, as evidenced by the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diagnosis of Parkinson's Disease Based on Hybrid Fusion Approach of Offline Handwriting Images Differentiable Duration Refinement Using Internal Division for Non-Autoregressive Text-to-Speech SoLAD: Sampling Over Latent Adapter for Few Shot Generation Robust Multi-Prototypes Aware Integration for Zero-Shot Cross-Domain Slot Filling LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1