利用 CRISPRmap 将多模式表型映射到细胞和组织的扰动上

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Nature biotechnology Pub Date : 2024-10-07 DOI:10.1038/s41587-024-02386-x
Jiacheng Gu, Abhishek Iyer, Ben Wesley, Angelo Taglialatela, Giuseppe Leuzzi, Sho Hangai, Aubrianna Decker, Ruoyu Gu, Naomi Klickstein, Yuanlong Shuai, Kristina Jankovic, Lucy Parker-Burns, Yinuo Jin, Jia Yi Zhang, Justin Hong, Xiang Niu, Jonathon A. Costa, Mikael G. Pezet, Jacqueline Chou, Hans-Willem Snoeck, Dan A. Landau, Elham Azizi, Edmond M. Chan, Alberto Ciccia, Jellert T. Gaublomme
{"title":"利用 CRISPRmap 将多模式表型映射到细胞和组织的扰动上","authors":"Jiacheng Gu, Abhishek Iyer, Ben Wesley, Angelo Taglialatela, Giuseppe Leuzzi, Sho Hangai, Aubrianna Decker, Ruoyu Gu, Naomi Klickstein, Yuanlong Shuai, Kristina Jankovic, Lucy Parker-Burns, Yinuo Jin, Jia Yi Zhang, Justin Hong, Xiang Niu, Jonathon A. Costa, Mikael G. Pezet, Jacqueline Chou, Hans-Willem Snoeck, Dan A. Landau, Elham Azizi, Edmond M. Chan, Alberto Ciccia, Jellert T. Gaublomme","doi":"10.1038/s41587-024-02386-x","DOIUrl":null,"url":null,"abstract":"<p>Unlike sequencing-based methods, which require cell lysis, optical pooled genetic screens enable investigation of spatial phenotypes, including cell morphology, protein subcellular localization, cell–cell interactions and tissue organization, in response to targeted CRISPR perturbations. Here we report a multimodal optical pooled CRISPR screening method, which we call CRISPRmap. CRISPRmap combines in situ CRISPR guide-identifying barcode readout with multiplexed immunofluorescence and RNA detection. Barcodes are detected and read out through combinatorial hybridization of DNA oligos, enhancing barcode detection efficiency. CRISPRmap enables in situ barcode readout in cell types and contexts that were elusive to conventional optical pooled screening, including cultured primary cells, embryonic stem cells, induced pluripotent stem cells, derived neurons and in vivo cells in a tissue context. We conducted a screen in a breast cancer cell line of the effects of DNA damage repair gene variants on cellular responses to commonly used cancer therapies, and we show that optical phenotyping pinpoints likely pathogenic patient-derived mutations that were previously classified as variants of unknown clinical significance.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":null,"pages":null},"PeriodicalIF":33.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping multimodal phenotypes to perturbations in cells and tissue with CRISPRmap\",\"authors\":\"Jiacheng Gu, Abhishek Iyer, Ben Wesley, Angelo Taglialatela, Giuseppe Leuzzi, Sho Hangai, Aubrianna Decker, Ruoyu Gu, Naomi Klickstein, Yuanlong Shuai, Kristina Jankovic, Lucy Parker-Burns, Yinuo Jin, Jia Yi Zhang, Justin Hong, Xiang Niu, Jonathon A. Costa, Mikael G. Pezet, Jacqueline Chou, Hans-Willem Snoeck, Dan A. Landau, Elham Azizi, Edmond M. Chan, Alberto Ciccia, Jellert T. Gaublomme\",\"doi\":\"10.1038/s41587-024-02386-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unlike sequencing-based methods, which require cell lysis, optical pooled genetic screens enable investigation of spatial phenotypes, including cell morphology, protein subcellular localization, cell–cell interactions and tissue organization, in response to targeted CRISPR perturbations. Here we report a multimodal optical pooled CRISPR screening method, which we call CRISPRmap. CRISPRmap combines in situ CRISPR guide-identifying barcode readout with multiplexed immunofluorescence and RNA detection. Barcodes are detected and read out through combinatorial hybridization of DNA oligos, enhancing barcode detection efficiency. CRISPRmap enables in situ barcode readout in cell types and contexts that were elusive to conventional optical pooled screening, including cultured primary cells, embryonic stem cells, induced pluripotent stem cells, derived neurons and in vivo cells in a tissue context. We conducted a screen in a breast cancer cell line of the effects of DNA damage repair gene variants on cellular responses to commonly used cancer therapies, and we show that optical phenotyping pinpoints likely pathogenic patient-derived mutations that were previously classified as variants of unknown clinical significance.</p>\",\"PeriodicalId\":19084,\"journal\":{\"name\":\"Nature biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":33.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41587-024-02386-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02386-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于测序的方法需要裂解细胞,与之不同的是,光学集合基因筛选可以研究细胞形态、蛋白质亚细胞定位、细胞-细胞相互作用和组织组织等空间表型对靶向 CRISPR 干扰的响应。在这里,我们报告了一种多模式光学集合CRISPR筛选方法,我们称之为CRISPRmap。CRISPRmap 将原位 CRISPR 引导识别条形码读取与多重免疫荧光和 RNA 检测相结合。条形码通过 DNA 寡聚物的组合杂交进行检测和读出,从而提高了条形码的检测效率。CRISPRmap 能够在细胞类型和环境中进行原位条形码读取,而传统的光学集合筛选则难以实现,包括培养的原代细胞、胚胎干细胞、诱导多能干细胞、衍生神经元和组织环境中的活体细胞。我们在乳腺癌细胞系中筛选了 DNA 损伤修复基因变异对细胞对常用癌症疗法反应的影响,结果表明,光学表型能准确定位以前被归类为临床意义未知变异的可能致病的患者来源变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapping multimodal phenotypes to perturbations in cells and tissue with CRISPRmap

Unlike sequencing-based methods, which require cell lysis, optical pooled genetic screens enable investigation of spatial phenotypes, including cell morphology, protein subcellular localization, cell–cell interactions and tissue organization, in response to targeted CRISPR perturbations. Here we report a multimodal optical pooled CRISPR screening method, which we call CRISPRmap. CRISPRmap combines in situ CRISPR guide-identifying barcode readout with multiplexed immunofluorescence and RNA detection. Barcodes are detected and read out through combinatorial hybridization of DNA oligos, enhancing barcode detection efficiency. CRISPRmap enables in situ barcode readout in cell types and contexts that were elusive to conventional optical pooled screening, including cultured primary cells, embryonic stem cells, induced pluripotent stem cells, derived neurons and in vivo cells in a tissue context. We conducted a screen in a breast cancer cell line of the effects of DNA damage repair gene variants on cellular responses to commonly used cancer therapies, and we show that optical phenotyping pinpoints likely pathogenic patient-derived mutations that were previously classified as variants of unknown clinical significance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
期刊最新文献
Amyloid is everywhere, but new treatments could stop the toxic build up Italy tests first gene-edited vines for winemaking Ancient and versatile CRISPR–Cas nuclease created with ancestral sequence reconstruction CRISPR Nobelists surrender their own European patents What will it take to get miRNA therapies to market?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1