一种害虫对杀虫剂的敏感性在接种培养的蚜虫后增加

Tingwei Cai, Pol Nadal-Jimenez, Yuanyuan Gao, Hiroshi Arai, Chengyue Li, Chunyan Su, Kayla C King, Shun He, Jianhong Li, Gregory D D Hurst, Hu Wan
{"title":"一种害虫对杀虫剂的敏感性在接种培养的蚜虫后增加","authors":"Tingwei Cai, Pol Nadal-Jimenez, Yuanyuan Gao, Hiroshi Arai, Chengyue Li, Chunyan Su, Kayla C King, Shun He, Jianhong Li, Gregory D D Hurst, Hu Wan","doi":"10.1093/ismejo/wrae194","DOIUrl":null,"url":null,"abstract":"Facultative vertically transmitted symbionts are a common feature of insects that determine many aspects of their hosts’ phenotype. Our capacity to understand and exploit these symbioses is commonly compromised by the microbes unculturability and consequent lack of genetic tools, an impediment of particular significance for symbioses of pest and vector species. Previous work had established that insecticide susceptibility of the economically important pest of rice, the brown planthopper Nilaparvata lugens, was higher in field-collected lineages that carry Ca. Arsenophonus nilaparvatae. We established Ca. A. nilaparvatae into cell-free culture and used this to establish the complete closed genome of the symbiont. We transformed the strain to express GFP and reintroduced it to N. lugens to track infection in vivo. The symbiont established vertical transmission, generating a discrete infection focus towards the posterior pole of each N. lugens oocyte. This infection focus was retained in early embryogenesis before transition to a diffuse somatic infection in late N. lugens embryos and nymphs. We additionally generated somatic infection in novel host species, but these did not establish vertical transmission. Transinfected planthopper lines acquired the insecticide sensitivity trait, with associated downregulation of the P450 xenobiotic detoxification system of the host. Our results causally establish the role of the symbiont in increasing host insecticide sensitivity with implications for insecticide use and stewardship. Further, the culturability and transformation of this intracellular symbiont, combined with its ease of reintroduction to planthopper hosts, enables novel approaches both for research into symbiosis and into control of insect pest species.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insecticide susceptibility in a planthopper pest increases following inoculation with cultured Arsenophonus\",\"authors\":\"Tingwei Cai, Pol Nadal-Jimenez, Yuanyuan Gao, Hiroshi Arai, Chengyue Li, Chunyan Su, Kayla C King, Shun He, Jianhong Li, Gregory D D Hurst, Hu Wan\",\"doi\":\"10.1093/ismejo/wrae194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facultative vertically transmitted symbionts are a common feature of insects that determine many aspects of their hosts’ phenotype. Our capacity to understand and exploit these symbioses is commonly compromised by the microbes unculturability and consequent lack of genetic tools, an impediment of particular significance for symbioses of pest and vector species. Previous work had established that insecticide susceptibility of the economically important pest of rice, the brown planthopper Nilaparvata lugens, was higher in field-collected lineages that carry Ca. Arsenophonus nilaparvatae. We established Ca. A. nilaparvatae into cell-free culture and used this to establish the complete closed genome of the symbiont. We transformed the strain to express GFP and reintroduced it to N. lugens to track infection in vivo. The symbiont established vertical transmission, generating a discrete infection focus towards the posterior pole of each N. lugens oocyte. This infection focus was retained in early embryogenesis before transition to a diffuse somatic infection in late N. lugens embryos and nymphs. We additionally generated somatic infection in novel host species, but these did not establish vertical transmission. Transinfected planthopper lines acquired the insecticide sensitivity trait, with associated downregulation of the P450 xenobiotic detoxification system of the host. Our results causally establish the role of the symbiont in increasing host insecticide sensitivity with implications for insecticide use and stewardship. Further, the culturability and transformation of this intracellular symbiont, combined with its ease of reintroduction to planthopper hosts, enables novel approaches both for research into symbiosis and into control of insect pest species.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

兼性垂直传播共生体是昆虫的一个共同特征,它决定了宿主表型的许多方面。我们了解和利用这些共生体的能力通常受到微生物不可培养性和随之而来的遗传工具缺乏的影响,这一障碍对于害虫和病媒物种的共生体尤为重要。以前的工作已经证实,对水稻具有重要经济价值的害虫--褐飞虱 Nilaparvata lugens--的杀虫剂敏感性在携带 Ca.Arsenophonus nilaparvatae。我们确定了 Ca.nilaparvatae 的无细胞培养,并以此建立了共生体的完整封闭基因组。我们将该菌株转化为表达 GFP 的菌株,并将其重新引入 N. lugens,以追踪体内感染情况。该共生体建立了垂直传播,在每个 N. lugens 卵母细胞的后极产生了一个离散的感染灶。在 N. lugens 胚胎和若虫后期过渡到弥漫性体细胞感染之前,这一感染病灶在早期胚胎发育过程中一直存在。我们还在新的宿主物种中产生了体细胞感染,但这些感染并未建立垂直传播。经转染的花斑叶蝉品系获得了对杀虫剂敏感的性状,宿主的 P450 异生物解毒系统也随之下调。我们的研究结果从因果关系上确定了共生体在提高宿主杀虫剂敏感性方面的作用,对杀虫剂的使用和管理具有重要意义。此外,这种细胞内共生体的可培养性和可转化性,再加上它易于被重新引入到栉水母宿主体内,使得共生研究和昆虫害虫控制都有了新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insecticide susceptibility in a planthopper pest increases following inoculation with cultured Arsenophonus
Facultative vertically transmitted symbionts are a common feature of insects that determine many aspects of their hosts’ phenotype. Our capacity to understand and exploit these symbioses is commonly compromised by the microbes unculturability and consequent lack of genetic tools, an impediment of particular significance for symbioses of pest and vector species. Previous work had established that insecticide susceptibility of the economically important pest of rice, the brown planthopper Nilaparvata lugens, was higher in field-collected lineages that carry Ca. Arsenophonus nilaparvatae. We established Ca. A. nilaparvatae into cell-free culture and used this to establish the complete closed genome of the symbiont. We transformed the strain to express GFP and reintroduced it to N. lugens to track infection in vivo. The symbiont established vertical transmission, generating a discrete infection focus towards the posterior pole of each N. lugens oocyte. This infection focus was retained in early embryogenesis before transition to a diffuse somatic infection in late N. lugens embryos and nymphs. We additionally generated somatic infection in novel host species, but these did not establish vertical transmission. Transinfected planthopper lines acquired the insecticide sensitivity trait, with associated downregulation of the P450 xenobiotic detoxification system of the host. Our results causally establish the role of the symbiont in increasing host insecticide sensitivity with implications for insecticide use and stewardship. Further, the culturability and transformation of this intracellular symbiont, combined with its ease of reintroduction to planthopper hosts, enables novel approaches both for research into symbiosis and into control of insect pest species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic and species rearrangements in microbial consortia impact biodegradation potential Led astray by 16S rRNA: phylogenomics reaffirms the monophyly of Methylobacterium and lack of support for Methylorubrum as a genus. Tolerance to land-use changes through natural modulations of the plant microbiome Prophage-encoded chitinase gene supports growth of its bacterial host isolated from deep-sea sediments Dispersal promotes stability and persistence of exploited yeast mutualisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1