{"title":"利用微形多孔介质承受谐波机械载荷的骨重塑频率相关模型","authors":"Yanfei Lu","doi":"10.1007/s00161-024-01326-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the bone tissue was modeled as a linear viscoelastic material saturated with interstitial fluid. We considered a specific case of harmonic loading and related the mechanical stimuli to the loading frequency. In this way, we could include the inertial effect in the model while not having to deal with the perturbation during each loading period. Two types of mechanical signals were considered: strain energy and dissipation energy. A parametric study revealed the dependency of the two signals on loading frequency and material property. The evolution of the apparent mass density supported the parametric study’s findings. Under the three different frequency loadings, the strain energy-stimulated samples experienced identical remodeling scenarios. The samples stimulated with dissipation energy, on the other hand, exhibited a strong frequency dependence. An additional study was performed to investigate the effect of long-term variations in the loading frequency on the remodeling process. This demonstrated the model’s capabilities in designing and evaluating load regimes for rehabilitation following a bone injury or bone reconstruction.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 6","pages":"1741 - 1753"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-024-01326-z.pdf","citationCount":"0","resultStr":"{\"title\":\"A frequency-dependent model for bone remodeling using a micromorphic porous medium subjected to harmonic mechanical loading\",\"authors\":\"Yanfei Lu\",\"doi\":\"10.1007/s00161-024-01326-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the bone tissue was modeled as a linear viscoelastic material saturated with interstitial fluid. We considered a specific case of harmonic loading and related the mechanical stimuli to the loading frequency. In this way, we could include the inertial effect in the model while not having to deal with the perturbation during each loading period. Two types of mechanical signals were considered: strain energy and dissipation energy. A parametric study revealed the dependency of the two signals on loading frequency and material property. The evolution of the apparent mass density supported the parametric study’s findings. Under the three different frequency loadings, the strain energy-stimulated samples experienced identical remodeling scenarios. The samples stimulated with dissipation energy, on the other hand, exhibited a strong frequency dependence. An additional study was performed to investigate the effect of long-term variations in the loading frequency on the remodeling process. This demonstrated the model’s capabilities in designing and evaluating load regimes for rehabilitation following a bone injury or bone reconstruction.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"36 6\",\"pages\":\"1741 - 1753\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00161-024-01326-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-024-01326-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01326-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
A frequency-dependent model for bone remodeling using a micromorphic porous medium subjected to harmonic mechanical loading
In this paper, the bone tissue was modeled as a linear viscoelastic material saturated with interstitial fluid. We considered a specific case of harmonic loading and related the mechanical stimuli to the loading frequency. In this way, we could include the inertial effect in the model while not having to deal with the perturbation during each loading period. Two types of mechanical signals were considered: strain energy and dissipation energy. A parametric study revealed the dependency of the two signals on loading frequency and material property. The evolution of the apparent mass density supported the parametric study’s findings. Under the three different frequency loadings, the strain energy-stimulated samples experienced identical remodeling scenarios. The samples stimulated with dissipation energy, on the other hand, exhibited a strong frequency dependence. An additional study was performed to investigate the effect of long-term variations in the loading frequency on the remodeling process. This demonstrated the model’s capabilities in designing and evaluating load regimes for rehabilitation following a bone injury or bone reconstruction.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.