具有时变波形函数的非稳态多分量信号的脊检测及其应用

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal Processing Pub Date : 2024-10-08 DOI:10.1109/TSP.2024.3476495
Yan-Wei Su;Gi-Ren Liu;Yuan-Chung Sheu;Hau-Tieng Wu
{"title":"具有时变波形函数的非稳态多分量信号的脊检测及其应用","authors":"Yan-Wei Su;Gi-Ren Liu;Yuan-Chung Sheu;Hau-Tieng Wu","doi":"10.1109/TSP.2024.3476495","DOIUrl":null,"url":null,"abstract":"We introduce a novel ridge detection algorithm for time-frequency (TF) analysis, particularly tailored for intricate nonstationary time series encompassing multiple non-sinusoidal oscillatory components. The algorithm is rooted in the distinctive geometric patterns that emerge in the TF domain due to such non-sinusoidal oscillations. We term this method \n<italic>shape-adaptive mode decomposition-based multiple harmonic ridge detection</i>\n (\n<monospace>SAMD-MHRD</monospace>\n). A swift implementation is available when supplementary information is at hand. We demonstrate the practical utility of \n<monospace>SAMD-MHRD</monospace>\n through its application to a real-world challenge. We employ it to devise a cutting-edge walking activity detection algorithm, leveraging accelerometer signals from an inertial measurement unit across diverse body locations of a moving subject.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"4843-4854"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ridge Detection for Nonstationary Multicomponent Signals With Time-Varying Wave-Shape Functions and its Applications\",\"authors\":\"Yan-Wei Su;Gi-Ren Liu;Yuan-Chung Sheu;Hau-Tieng Wu\",\"doi\":\"10.1109/TSP.2024.3476495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel ridge detection algorithm for time-frequency (TF) analysis, particularly tailored for intricate nonstationary time series encompassing multiple non-sinusoidal oscillatory components. The algorithm is rooted in the distinctive geometric patterns that emerge in the TF domain due to such non-sinusoidal oscillations. We term this method \\n<italic>shape-adaptive mode decomposition-based multiple harmonic ridge detection</i>\\n (\\n<monospace>SAMD-MHRD</monospace>\\n). A swift implementation is available when supplementary information is at hand. We demonstrate the practical utility of \\n<monospace>SAMD-MHRD</monospace>\\n through its application to a real-world challenge. We employ it to devise a cutting-edge walking activity detection algorithm, leveraging accelerometer signals from an inertial measurement unit across diverse body locations of a moving subject.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"72 \",\"pages\":\"4843-4854\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10709894/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10709894/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种用于时间频率(TF)分析的新型脊检测算法,该算法特别适用于包含多个非正弦振荡成分的复杂非平稳时间序列。该算法源于 TF 域中因此类非正弦振荡而出现的独特几何模式。我们将这种方法称为基于形状自适应模式分解的多重谐波脊检测(SAMD-MHRD)。当手头有补充信息时,可以快速实现。我们通过将 SAMD-MHRD 应用于现实世界的挑战来展示它的实用性。我们利用它设计了一种先进的步行活动检测算法,利用惯性测量单元发出的加速度计信号检测移动对象的不同身体位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ridge Detection for Nonstationary Multicomponent Signals With Time-Varying Wave-Shape Functions and its Applications
We introduce a novel ridge detection algorithm for time-frequency (TF) analysis, particularly tailored for intricate nonstationary time series encompassing multiple non-sinusoidal oscillatory components. The algorithm is rooted in the distinctive geometric patterns that emerge in the TF domain due to such non-sinusoidal oscillations. We term this method shape-adaptive mode decomposition-based multiple harmonic ridge detection ( SAMD-MHRD ). A swift implementation is available when supplementary information is at hand. We demonstrate the practical utility of SAMD-MHRD through its application to a real-world challenge. We employ it to devise a cutting-edge walking activity detection algorithm, leveraging accelerometer signals from an inertial measurement unit across diverse body locations of a moving subject.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
期刊最新文献
Simplicial Vector Autoregressive Models A Directional Generation Algorithm for SAR Image based on Azimuth-Guided Statistical Generative Adversarial Network Structured Directional Pruning via Perturbation Orthogonal Projection Intelligent Reflecting Surface-Assisted NLOS Sensing With OFDM Signals Robust Multichannel Decorrelation via Tensor Einstein Product
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1