利用扫描隧道显微镜研究用于太阳能电池的过氧化物材料。

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2024-10-10 DOI:10.1039/d4cp02010c
Yule Wang, Bin-Bin Cui, Yiming Zhao, Tao Lin, Juan Li
{"title":"利用扫描隧道显微镜研究用于太阳能电池的过氧化物材料。","authors":"Yule Wang, Bin-Bin Cui, Yiming Zhao, Tao Lin, Juan Li","doi":"10.1039/d4cp02010c","DOIUrl":null,"url":null,"abstract":"<p><p>The issue of energy scarcity has become more prominent due to the recent scientific and technological advancements. Consequently, there is an urgent need for research on sustainable and renewable resources. Solar energy, in particular, has emerged as a highly promising option because of its pollution-free and environment-friendly characteristics. Among the various solar energy technologies, perovskite solar cells have attracted much attention due to their lower cost and higher photoelectric conversion efficiency (PCE). However, the inherent instability of perovskite materials hinders the commercialization of such devices. The utilization of scanning tunneling microscopy/spectroscopy (STM/STS) can provide valuable insights into the fundamental properties of different perovskite materials at the atomic scale, which is crucial for addressing this challenge. In this review, we present the recent research progress of STM/STS analysis applied to various perovskites for solar cells, including halide perovskites, two-dimensional Ruddlesden-Popper perovskites, and oxide perovskites. This comprehensive overview aims to inspire new ideas and strategies for optimizing solar cells.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of perovskite materials for solar cells using scanning tunneling microscopy.\",\"authors\":\"Yule Wang, Bin-Bin Cui, Yiming Zhao, Tao Lin, Juan Li\",\"doi\":\"10.1039/d4cp02010c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The issue of energy scarcity has become more prominent due to the recent scientific and technological advancements. Consequently, there is an urgent need for research on sustainable and renewable resources. Solar energy, in particular, has emerged as a highly promising option because of its pollution-free and environment-friendly characteristics. Among the various solar energy technologies, perovskite solar cells have attracted much attention due to their lower cost and higher photoelectric conversion efficiency (PCE). However, the inherent instability of perovskite materials hinders the commercialization of such devices. The utilization of scanning tunneling microscopy/spectroscopy (STM/STS) can provide valuable insights into the fundamental properties of different perovskite materials at the atomic scale, which is crucial for addressing this challenge. In this review, we present the recent research progress of STM/STS analysis applied to various perovskites for solar cells, including halide perovskites, two-dimensional Ruddlesden-Popper perovskites, and oxide perovskites. This comprehensive overview aims to inspire new ideas and strategies for optimizing solar cells.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cp02010c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp02010c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于最近的科技进步,能源短缺问题变得更加突出。因此,迫切需要对可持续和可再生资源进行研究。特别是太阳能,由于其无污染和环境友好的特点,已成为一种极具前景的选择。在各种太阳能技术中,包晶体太阳能电池因其较低的成本和较高的光电转换效率(PCE)而备受关注。然而,包晶石材料固有的不稳定性阻碍了此类设备的商业化。利用扫描隧道显微镜/光谱学(STM/STS)可以在原子尺度上深入了解不同包晶石材料的基本特性,这对解决这一难题至关重要。在这篇综述中,我们介绍了将 STM/STS 分析应用于各种太阳能电池用包晶石的最新研究进展,包括卤化物包晶石、二维 Ruddlesden-Popper 包晶石和氧化物包晶石。本综述旨在启发优化太阳能电池的新思路和新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of perovskite materials for solar cells using scanning tunneling microscopy.

The issue of energy scarcity has become more prominent due to the recent scientific and technological advancements. Consequently, there is an urgent need for research on sustainable and renewable resources. Solar energy, in particular, has emerged as a highly promising option because of its pollution-free and environment-friendly characteristics. Among the various solar energy technologies, perovskite solar cells have attracted much attention due to their lower cost and higher photoelectric conversion efficiency (PCE). However, the inherent instability of perovskite materials hinders the commercialization of such devices. The utilization of scanning tunneling microscopy/spectroscopy (STM/STS) can provide valuable insights into the fundamental properties of different perovskite materials at the atomic scale, which is crucial for addressing this challenge. In this review, we present the recent research progress of STM/STS analysis applied to various perovskites for solar cells, including halide perovskites, two-dimensional Ruddlesden-Popper perovskites, and oxide perovskites. This comprehensive overview aims to inspire new ideas and strategies for optimizing solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Multi-level chiral edge states in Janus M2XS2Se2 (M = V, Ti; X = W, Mo) monolayers with high Curie temperature and sizable nontrivial topological gaps Magnetic-field-controlled positioning of magnetic domain wall in Tie-shaped asymmetric nanowire and its application for magnetic field detection Comprehensive characterization of waterlogged archaeological wood by NMR relaxometry, diffusometry, micro-imaging and cryoporometry. Fundamental basis of mechanochemical reactivity. Two-dimensional BiSbTeX2 (X = S, Se, Te) and their Janus monolayers as efficient thermoelectric materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1