Hyun-Jae Lee, Dong Joo Shin, Soo Bin Nho, Ki Won Lee, Sun-Ki Kim
{"title":"发酵生产血红素的酿酒酵母代谢工程。","authors":"Hyun-Jae Lee, Dong Joo Shin, Soo Bin Nho, Ki Won Lee, Sun-Ki Kim","doi":"10.1002/biot.202400351","DOIUrl":null,"url":null,"abstract":"<p>Heme is a key ingredient required to mimic the color and flavor of meat in plant-based alternatives. This study aimed to develop a yeast-based microbial cell factory for efficient and sustainable production of heme. To this end, first, Hem12p (uroporphyrinogen decarboxylase) was identified as the rate-limiting enzyme in the heme biosynthetic pathway present in <i>Saccharomyces cerevisiae</i> D452-2. Next, we investigated the effects of disruption of the genes involved in the competition for heme biosynthesis precursors, transcriptional repression, and heme degradation (<i>HMX1</i>) on heme production efficiency. Of the knock-out strains constructed in this study, only the <i>HMX1</i>-deficient strain produced heme at a higher concentration than the background strain without gene disruption. In addition, overexpression of <i>PUG1</i> encoding a plasma membrane transporter involved in protoporphyrin IX (the precursor to heme biosynthesis) uptake led to a significant increase in intracellular heme concentration. As a result, among the various engineered strains constructed in this study, the ΔHMX1/H3&12 + PUG1 strain, the <i>HMX1</i>-deficient strain overexpressing <i>HEM3</i>, <i>HEM12</i>, and <i>PUG1</i>, produced the highest concentration of heme (4.6 mg/L) in batch fermentation, which was 3.9-fold higher than that produced by the wild-type D452-2 strain. In a glucose-limited fed-batch fermentation, the ΔHMX1/H3&12 + PUG1 strain produced 28 mg/L heme in 66 h.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400351","citationCount":"0","resultStr":"{\"title\":\"Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme\",\"authors\":\"Hyun-Jae Lee, Dong Joo Shin, Soo Bin Nho, Ki Won Lee, Sun-Ki Kim\",\"doi\":\"10.1002/biot.202400351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heme is a key ingredient required to mimic the color and flavor of meat in plant-based alternatives. This study aimed to develop a yeast-based microbial cell factory for efficient and sustainable production of heme. To this end, first, Hem12p (uroporphyrinogen decarboxylase) was identified as the rate-limiting enzyme in the heme biosynthetic pathway present in <i>Saccharomyces cerevisiae</i> D452-2. Next, we investigated the effects of disruption of the genes involved in the competition for heme biosynthesis precursors, transcriptional repression, and heme degradation (<i>HMX1</i>) on heme production efficiency. Of the knock-out strains constructed in this study, only the <i>HMX1</i>-deficient strain produced heme at a higher concentration than the background strain without gene disruption. In addition, overexpression of <i>PUG1</i> encoding a plasma membrane transporter involved in protoporphyrin IX (the precursor to heme biosynthesis) uptake led to a significant increase in intracellular heme concentration. As a result, among the various engineered strains constructed in this study, the ΔHMX1/H3&12 + PUG1 strain, the <i>HMX1</i>-deficient strain overexpressing <i>HEM3</i>, <i>HEM12</i>, and <i>PUG1</i>, produced the highest concentration of heme (4.6 mg/L) in batch fermentation, which was 3.9-fold higher than that produced by the wild-type D452-2 strain. In a glucose-limited fed-batch fermentation, the ΔHMX1/H3&12 + PUG1 strain produced 28 mg/L heme in 66 h.</p>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 10\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400351\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400351\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400351","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme
Heme is a key ingredient required to mimic the color and flavor of meat in plant-based alternatives. This study aimed to develop a yeast-based microbial cell factory for efficient and sustainable production of heme. To this end, first, Hem12p (uroporphyrinogen decarboxylase) was identified as the rate-limiting enzyme in the heme biosynthetic pathway present in Saccharomyces cerevisiae D452-2. Next, we investigated the effects of disruption of the genes involved in the competition for heme biosynthesis precursors, transcriptional repression, and heme degradation (HMX1) on heme production efficiency. Of the knock-out strains constructed in this study, only the HMX1-deficient strain produced heme at a higher concentration than the background strain without gene disruption. In addition, overexpression of PUG1 encoding a plasma membrane transporter involved in protoporphyrin IX (the precursor to heme biosynthesis) uptake led to a significant increase in intracellular heme concentration. As a result, among the various engineered strains constructed in this study, the ΔHMX1/H3&12 + PUG1 strain, the HMX1-deficient strain overexpressing HEM3, HEM12, and PUG1, produced the highest concentration of heme (4.6 mg/L) in batch fermentation, which was 3.9-fold higher than that produced by the wild-type D452-2 strain. In a glucose-limited fed-batch fermentation, the ΔHMX1/H3&12 + PUG1 strain produced 28 mg/L heme in 66 h.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.