母体丧失 24- 羟化酶会导致小鼠妊娠期肠道钙吸收增加和高钙血症,但哺乳期骨骼吸收减少。

IF 5.1 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Bone and Mineral Research Pub Date : 2024-10-10 DOI:10.1093/jbmr/zjae166
Alexandre S Maekawa, David Bennin, Sarah A Hartery, Beth J Kirby, Ingrid J Poulton, René St-Arnaud, Natalie A Sims, Christopher S Kovacs
{"title":"母体丧失 24- 羟化酶会导致小鼠妊娠期肠道钙吸收增加和高钙血症,但哺乳期骨骼吸收减少。","authors":"Alexandre S Maekawa, David Bennin, Sarah A Hartery, Beth J Kirby, Ingrid J Poulton, René St-Arnaud, Natalie A Sims, Christopher S Kovacs","doi":"10.1093/jbmr/zjae166","DOIUrl":null,"url":null,"abstract":"<p><p>Inactivation of 24-hydroxylase (CYP24A1) causes mild hypercalcemia in humans that becomes severe and life-threatening during pregnancy through unclear mechanisms. We studied Cyp24a1 null mice during pregnancy, lactation, and post-weaning. We hypothesized that Cyp24a1 nulls have a much greater increase in calcitriol during pregnancy and lactation, leading to markedly increased intestinal calcium absorption and reduced lactational bone loss. WT and Cyp24a1 null sisters were mated to Cyp24a1+/- males. Timepoints included baseline (BL), late pregnancy (LP), mid-lactation (ML), late lactation (LL), and weekly x4 weeks of post-weaning recovery (R1-4). Assessments included intestinal calcium absorption (IntCaAbs) by gavage of 45Ca, bone mineral content (BMC) by DXA, microCT of femurs, 3-point bending tests of tibias, serum hormones, serum and urine minerals, milk analysis, and intestinal gene expression. At LP, whole body BMC increased equally by ~12% in null and WT. Calcitriol was 2.5-fold higher in nulls vs WT, accompanied by 3-fold increased IntCaAbs, hypercalcemia, hypercalciuria, and 6.5-fold higher FGF23. PTH was suppressed in both. Twenty percent of null dams died during delivery but their serum calcium at LP did not differ from Cyp24a1 nulls that survived. At ML, calcitriol, IntCaAbs, and FGF23 declined in both genotypes but remained higher than BL values in Cyp24a1 nulls. By LL, nulls were still hypercalcemic vs WT, and had lost less mean whole body BMC (11% vs. 21%, P<.02), but by micro-CT there were no differences from WT in cortical or trabecular bone mass. Lactational losses in BMC, cortical thickness, and trabecular number were restored by R4 in both genotypes. In summary, ablation of Cyp24a1 increased IntCaAbs and caused hypercalcemia during pregnancy and lactation, late gestational mortality in some nulls, and reduced lactational BMC loss. Treating women with gestational hypercalcemia from CYP24A1 mutations should focus on reducing calcitriol or IntCaAbs, since increased bone resorption is not the cause.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maternal loss of 24-hydroxylase causes increased intestinal calcium absorption and hypercalcemia during pregnancy but reduced skeletal resorption during lactation in mice.\",\"authors\":\"Alexandre S Maekawa, David Bennin, Sarah A Hartery, Beth J Kirby, Ingrid J Poulton, René St-Arnaud, Natalie A Sims, Christopher S Kovacs\",\"doi\":\"10.1093/jbmr/zjae166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inactivation of 24-hydroxylase (CYP24A1) causes mild hypercalcemia in humans that becomes severe and life-threatening during pregnancy through unclear mechanisms. We studied Cyp24a1 null mice during pregnancy, lactation, and post-weaning. We hypothesized that Cyp24a1 nulls have a much greater increase in calcitriol during pregnancy and lactation, leading to markedly increased intestinal calcium absorption and reduced lactational bone loss. WT and Cyp24a1 null sisters were mated to Cyp24a1+/- males. Timepoints included baseline (BL), late pregnancy (LP), mid-lactation (ML), late lactation (LL), and weekly x4 weeks of post-weaning recovery (R1-4). Assessments included intestinal calcium absorption (IntCaAbs) by gavage of 45Ca, bone mineral content (BMC) by DXA, microCT of femurs, 3-point bending tests of tibias, serum hormones, serum and urine minerals, milk analysis, and intestinal gene expression. At LP, whole body BMC increased equally by ~12% in null and WT. Calcitriol was 2.5-fold higher in nulls vs WT, accompanied by 3-fold increased IntCaAbs, hypercalcemia, hypercalciuria, and 6.5-fold higher FGF23. PTH was suppressed in both. Twenty percent of null dams died during delivery but their serum calcium at LP did not differ from Cyp24a1 nulls that survived. At ML, calcitriol, IntCaAbs, and FGF23 declined in both genotypes but remained higher than BL values in Cyp24a1 nulls. By LL, nulls were still hypercalcemic vs WT, and had lost less mean whole body BMC (11% vs. 21%, P<.02), but by micro-CT there were no differences from WT in cortical or trabecular bone mass. Lactational losses in BMC, cortical thickness, and trabecular number were restored by R4 in both genotypes. In summary, ablation of Cyp24a1 increased IntCaAbs and caused hypercalcemia during pregnancy and lactation, late gestational mortality in some nulls, and reduced lactational BMC loss. Treating women with gestational hypercalcemia from CYP24A1 mutations should focus on reducing calcitriol or IntCaAbs, since increased bone resorption is not the cause.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjae166\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae166","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

24-羟化酶(CYP24A1)失活会导致人类轻度高钙血症,在妊娠期间会变得严重并危及生命,其机制尚不清楚。我们对妊娠期、哺乳期和断奶后的 Cyp24a1 基因缺失小鼠进行了研究。我们假设,Cyp24a1无效小鼠在妊娠期和哺乳期的降钙素三醇增加幅度更大,从而导致肠道钙吸收明显增加和哺乳期骨质流失减少。WT和Cyp24a1无效姐妹与Cyp24a1+/-雄性交配。时间点包括基线(BL)、妊娠晚期(LP)、哺乳中期(ML)、哺乳晚期(LL)和每周 x4 周的断奶后恢复期(R1-4)。评估包括通过灌胃45钙进行的肠道钙吸收(IntCaAbs)、通过DXA进行的骨矿物质含量(BMC)、股骨显微CT、胫骨3点弯曲试验、血清激素、血清和尿液矿物质、牛奶分析以及肠道基因表达。在低体重时,Null和WT的全身BMC同样增加了约12%。空鼠的骨化三醇是WT的2.5倍,伴随着IntCaAbs增加3倍、高钙血症、高钙尿和FGF23增加6.5倍。两者的 PTH 都受到抑制。20%的无效母鼠在分娩过程中死亡,但她们在LP时的血清钙与存活的Cyp24a1无效母鼠没有差异。在 ML 期,两种基因型的降钙素三醇、IntCaAbs 和 FGF23 都有所下降,但仍高于 Cyp24a1 null 的 BL 值。到 LL 时,Cyp24a1 空鼠与 WT 相比仍处于高钙血症状态,其全身 BMC 平均损失较少(11% vs. 21%,P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maternal loss of 24-hydroxylase causes increased intestinal calcium absorption and hypercalcemia during pregnancy but reduced skeletal resorption during lactation in mice.

Inactivation of 24-hydroxylase (CYP24A1) causes mild hypercalcemia in humans that becomes severe and life-threatening during pregnancy through unclear mechanisms. We studied Cyp24a1 null mice during pregnancy, lactation, and post-weaning. We hypothesized that Cyp24a1 nulls have a much greater increase in calcitriol during pregnancy and lactation, leading to markedly increased intestinal calcium absorption and reduced lactational bone loss. WT and Cyp24a1 null sisters were mated to Cyp24a1+/- males. Timepoints included baseline (BL), late pregnancy (LP), mid-lactation (ML), late lactation (LL), and weekly x4 weeks of post-weaning recovery (R1-4). Assessments included intestinal calcium absorption (IntCaAbs) by gavage of 45Ca, bone mineral content (BMC) by DXA, microCT of femurs, 3-point bending tests of tibias, serum hormones, serum and urine minerals, milk analysis, and intestinal gene expression. At LP, whole body BMC increased equally by ~12% in null and WT. Calcitriol was 2.5-fold higher in nulls vs WT, accompanied by 3-fold increased IntCaAbs, hypercalcemia, hypercalciuria, and 6.5-fold higher FGF23. PTH was suppressed in both. Twenty percent of null dams died during delivery but their serum calcium at LP did not differ from Cyp24a1 nulls that survived. At ML, calcitriol, IntCaAbs, and FGF23 declined in both genotypes but remained higher than BL values in Cyp24a1 nulls. By LL, nulls were still hypercalcemic vs WT, and had lost less mean whole body BMC (11% vs. 21%, P<.02), but by micro-CT there were no differences from WT in cortical or trabecular bone mass. Lactational losses in BMC, cortical thickness, and trabecular number were restored by R4 in both genotypes. In summary, ablation of Cyp24a1 increased IntCaAbs and caused hypercalcemia during pregnancy and lactation, late gestational mortality in some nulls, and reduced lactational BMC loss. Treating women with gestational hypercalcemia from CYP24A1 mutations should focus on reducing calcitriol or IntCaAbs, since increased bone resorption is not the cause.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
期刊最新文献
Long-duration type 1 diabetes is associated with deficient cortical bone mechanical behavior and altered matrix composition in human femoral bone. One day at a time: understanding how 24-hour physical activity, sedentary behavior and sleep patterns influence falls and fracture risk. A systematic review and meta-analysis of the effects of probiotics on bone outcomes in rodent models. Vertebral fracture prevalence and risk factors for fracture in the Gambia, West Africa: the Gambian bone and muscle ageing study. Modeling of Skeletal Development and Diseases Using Human Pluripotent Stem Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1