THF-C1 代谢产生的甲酸诱导甲酸脱氢酶缺陷的 Komagataella phaffii 的 AOX1 启动子。

IF 5.7 2区 生物学 Microbial Biotechnology Pub Date : 2024-10-07 DOI:10.1111/1751-7915.70022
Cristina Bustos, Julio Berrios, Patrick Fickers
{"title":"THF-C1 代谢产生的甲酸诱导甲酸脱氢酶缺陷的 Komagataella phaffii 的 AOX1 启动子。","authors":"Cristina Bustos,&nbsp;Julio Berrios,&nbsp;Patrick Fickers","doi":"10.1111/1751-7915.70022","DOIUrl":null,"url":null,"abstract":"<p>In <i>Komagataella phaffii (Pichia pastoris)</i>, formate is a recognized alternative inducer to methanol for expression systems based on the <i>AOX1</i> promoter (p<i>AOX1</i>). By disrupting the formate dehydrogenase encoding <i>FDH1</i> gene, we converted such a system into a self-induced one, as adding any inducer in the culture medium is no longer requested for p<i>AOX1</i> induction. In cells, formate is generated from serine through the THF-C1 metabolism, and it cannot be converted into carbon dioxide in a FdhKO strain. Under non-repressive culture conditions, such as on sorbitol, the intracellular formate generated from the THF-C1 metabolism is sufficient to induce p<i>AOX1</i> and initiate protein synthesis. This was evidenced for two model proteins, namely intracellular eGFP and secreted CalB lipase from <i>C. antarctica.</i> Similar protein productivities were obtained for a FdhKO strain on sorbitol and a non-disrupted strain on sorbitol-methanol. Considering a <i>K. Phaffii</i> FdhKO strain as a workhorse for recombinant protein synthesis paves the way for the further development of methanol-free processes in <i>K. phaffii</i>.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457876/pdf/","citationCount":"0","resultStr":"{\"title\":\"Formate from THF-C1 metabolism induces the AOX1 promoter in formate dehydrogenase-deficient Komagataella phaffii\",\"authors\":\"Cristina Bustos,&nbsp;Julio Berrios,&nbsp;Patrick Fickers\",\"doi\":\"10.1111/1751-7915.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In <i>Komagataella phaffii (Pichia pastoris)</i>, formate is a recognized alternative inducer to methanol for expression systems based on the <i>AOX1</i> promoter (p<i>AOX1</i>). By disrupting the formate dehydrogenase encoding <i>FDH1</i> gene, we converted such a system into a self-induced one, as adding any inducer in the culture medium is no longer requested for p<i>AOX1</i> induction. In cells, formate is generated from serine through the THF-C1 metabolism, and it cannot be converted into carbon dioxide in a FdhKO strain. Under non-repressive culture conditions, such as on sorbitol, the intracellular formate generated from the THF-C1 metabolism is sufficient to induce p<i>AOX1</i> and initiate protein synthesis. This was evidenced for two model proteins, namely intracellular eGFP and secreted CalB lipase from <i>C. antarctica.</i> Similar protein productivities were obtained for a FdhKO strain on sorbitol and a non-disrupted strain on sorbitol-methanol. Considering a <i>K. Phaffii</i> FdhKO strain as a workhorse for recombinant protein synthesis paves the way for the further development of methanol-free processes in <i>K. phaffii</i>.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70022\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70022","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 Komagataella phaffii(Pichia pastoris)中,甲酸盐是基于 AOX1 启动子(pAOX1)的表达系统公认的甲醇替代诱导剂。通过破坏编码 FDH1 基因的甲酸脱氢酶,我们将这种系统转化为自我诱导系统,因为在培养基中添加任何诱导剂都不再需要 pAOX1 诱导。在细胞中,甲酸盐是由丝氨酸通过 THF-C1 代谢生成的,而在 FdhKO 菌株中,甲酸盐无法转化为二氧化碳。在山梨醇等非抑制性培养条件下,THF-C1 新陈代谢产生的细胞内甲酸盐足以诱导 pAOX1 并启动蛋白质合成。这一点在两种模型蛋白(即细胞内 eGFP 和来自南极藻类的分泌型 CalB 脂肪酶)上得到了证明。FdhKO 菌株在山梨醇上和未被破坏的菌株在山梨醇-甲醇上获得了相似的蛋白质生产率。将 K. Phaffii FdhKO 菌株视为重组蛋白合成的主力军,为进一步开发 K. phaffii 的无甲醇工艺铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formate from THF-C1 metabolism induces the AOX1 promoter in formate dehydrogenase-deficient Komagataella phaffii

In Komagataella phaffii (Pichia pastoris), formate is a recognized alternative inducer to methanol for expression systems based on the AOX1 promoter (pAOX1). By disrupting the formate dehydrogenase encoding FDH1 gene, we converted such a system into a self-induced one, as adding any inducer in the culture medium is no longer requested for pAOX1 induction. In cells, formate is generated from serine through the THF-C1 metabolism, and it cannot be converted into carbon dioxide in a FdhKO strain. Under non-repressive culture conditions, such as on sorbitol, the intracellular formate generated from the THF-C1 metabolism is sufficient to induce pAOX1 and initiate protein synthesis. This was evidenced for two model proteins, namely intracellular eGFP and secreted CalB lipase from C. antarctica. Similar protein productivities were obtained for a FdhKO strain on sorbitol and a non-disrupted strain on sorbitol-methanol. Considering a K. Phaffii FdhKO strain as a workhorse for recombinant protein synthesis paves the way for the further development of methanol-free processes in K. phaffii.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
期刊最新文献
Substitute Yeast Extract While Maintaining Performance: Showcase Amorpha-4,11-Diene Production Impact of fleQ Deficiency on Resource Allocation and Heterologous Gene Expression in Pseudomonas putida Across Various Growth Media Microalgae and cyanobacteria as microbial substrate and their influence on the potential postbiotic capability of a bacterial probiotic New insights for the development of efficient DNA vaccines Bacterial Catabolism of Phthalates With Estrogenic Activity Used as Plasticisers in the Manufacture of Plastic Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1