{"title":"多种 ABC 转运体参与了柯氏链霉菌中多柔比星的外排。","authors":"Jianxin Dong, Jiali Ning, Yu Tian, Han Li, Hua Chen, Wenjun Guan","doi":"10.1111/1751-7915.70023","DOIUrl":null,"url":null,"abstract":"<p><i>Streptomyces</i> genus produces a large number of antibiotics, which are always synthesized by specific biosynthetic gene clusters (BGCs). To resist autotoxicity, transporters encoded by genes located within BGC occasionally pump antibiotic along with transporter encoded by gene located outside BGC. Daunorubicin is an anthracycline antibiotic biosynthesized by <i>Streptomyces</i> species, playing a crucial role in the treatment of leukaemia. In existing studies, only one two-component ATP-binding cassette (ABC) transporter, encoded by <i>drrA1-drrB1</i> (abbreviated as <i>drrAB1</i>) and located within the daunorubicin BGC, has been proven to extrude daunorubicin. In this work, two other two-component ABC transporters, encoded by <i>drrAB2</i> and <i>drrAB3</i> and located outside the cluster, were found to play the complementary role in daunorubicin efflux in <i>S. coeruleorubidus</i>. Disruption of three <i>drrAB</i>s resulted in a 94% decrease in daunorubicin production. Furthermore, <i>drrAB2</i> is regulated by the TetR family regulator DrrR1, responding to the intracellular accumulation of daunorubicin and suggesting its role in stress response and self-resistance. Although the homologues of DrrAB1 are only found in three anthracycline BGCs, the homologues of DrrAB2 and DrrAB3 are spread in many <i>Streptomyces</i> strains which do not contain any known anthracycline BGC. This indicates that DrrAB2 and DrrAB3 may recognize and extrude a broader range of substrates besides daunorubicin, thus playing a more extensive role in cellular detoxification.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458662/pdf/","citationCount":"0","resultStr":"{\"title\":\"The involvement of multiple ABC transporters in daunorubicin efflux in Streptomyces coeruleorubidus\",\"authors\":\"Jianxin Dong, Jiali Ning, Yu Tian, Han Li, Hua Chen, Wenjun Guan\",\"doi\":\"10.1111/1751-7915.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Streptomyces</i> genus produces a large number of antibiotics, which are always synthesized by specific biosynthetic gene clusters (BGCs). To resist autotoxicity, transporters encoded by genes located within BGC occasionally pump antibiotic along with transporter encoded by gene located outside BGC. Daunorubicin is an anthracycline antibiotic biosynthesized by <i>Streptomyces</i> species, playing a crucial role in the treatment of leukaemia. In existing studies, only one two-component ATP-binding cassette (ABC) transporter, encoded by <i>drrA1-drrB1</i> (abbreviated as <i>drrAB1</i>) and located within the daunorubicin BGC, has been proven to extrude daunorubicin. In this work, two other two-component ABC transporters, encoded by <i>drrAB2</i> and <i>drrAB3</i> and located outside the cluster, were found to play the complementary role in daunorubicin efflux in <i>S. coeruleorubidus</i>. Disruption of three <i>drrAB</i>s resulted in a 94% decrease in daunorubicin production. Furthermore, <i>drrAB2</i> is regulated by the TetR family regulator DrrR1, responding to the intracellular accumulation of daunorubicin and suggesting its role in stress response and self-resistance. Although the homologues of DrrAB1 are only found in three anthracycline BGCs, the homologues of DrrAB2 and DrrAB3 are spread in many <i>Streptomyces</i> strains which do not contain any known anthracycline BGC. This indicates that DrrAB2 and DrrAB3 may recognize and extrude a broader range of substrates besides daunorubicin, thus playing a more extensive role in cellular detoxification.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458662/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70023\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The involvement of multiple ABC transporters in daunorubicin efflux in Streptomyces coeruleorubidus
Streptomyces genus produces a large number of antibiotics, which are always synthesized by specific biosynthetic gene clusters (BGCs). To resist autotoxicity, transporters encoded by genes located within BGC occasionally pump antibiotic along with transporter encoded by gene located outside BGC. Daunorubicin is an anthracycline antibiotic biosynthesized by Streptomyces species, playing a crucial role in the treatment of leukaemia. In existing studies, only one two-component ATP-binding cassette (ABC) transporter, encoded by drrA1-drrB1 (abbreviated as drrAB1) and located within the daunorubicin BGC, has been proven to extrude daunorubicin. In this work, two other two-component ABC transporters, encoded by drrAB2 and drrAB3 and located outside the cluster, were found to play the complementary role in daunorubicin efflux in S. coeruleorubidus. Disruption of three drrABs resulted in a 94% decrease in daunorubicin production. Furthermore, drrAB2 is regulated by the TetR family regulator DrrR1, responding to the intracellular accumulation of daunorubicin and suggesting its role in stress response and self-resistance. Although the homologues of DrrAB1 are only found in three anthracycline BGCs, the homologues of DrrAB2 and DrrAB3 are spread in many Streptomyces strains which do not contain any known anthracycline BGC. This indicates that DrrAB2 and DrrAB3 may recognize and extrude a broader range of substrates besides daunorubicin, thus playing a more extensive role in cellular detoxification.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes