Tobias Franz, Sabine Stegemann-Koniszewski, Jens Schreiber, Andreas Müller, Dunja Bruder, Anne Dudeck, Julia D Boehme, Sascha Kahlfuss
{"title":"哮喘内型中 T 细胞的代谢和离子控制。","authors":"Tobias Franz, Sabine Stegemann-Koniszewski, Jens Schreiber, Andreas Müller, Dunja Bruder, Anne Dudeck, Julia D Boehme, Sascha Kahlfuss","doi":"10.1152/ajpcell.00474.2024","DOIUrl":null,"url":null,"abstract":"<p><p>CD4<sup>+ </sup>T cells play a central role in orchestrating the immune response in asthma, with dysregulated ion channel profiles and altered metabolic signatures contributing to disease progression and severity. An important classification of asthma is based on the presence of T-helper cell type 2 (Th2) inflammation, dividing patients into Th2-high and Th2-low endotypes. These distinct endotypes have implications for disease severity, treatment response, and prognosis. By elucidating how ion channels and energy metabolism control Th cells in asthma, this review contributes to the pathophysiological understanding and the prospective development of personalized therapeutic treatment strategies for patients suffering from distinct asthma endotypes.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1300-C1307"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic and ionic control of T cells in asthma endotypes.\",\"authors\":\"Tobias Franz, Sabine Stegemann-Koniszewski, Jens Schreiber, Andreas Müller, Dunja Bruder, Anne Dudeck, Julia D Boehme, Sascha Kahlfuss\",\"doi\":\"10.1152/ajpcell.00474.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CD4<sup>+ </sup>T cells play a central role in orchestrating the immune response in asthma, with dysregulated ion channel profiles and altered metabolic signatures contributing to disease progression and severity. An important classification of asthma is based on the presence of T-helper cell type 2 (Th2) inflammation, dividing patients into Th2-high and Th2-low endotypes. These distinct endotypes have implications for disease severity, treatment response, and prognosis. By elucidating how ion channels and energy metabolism control Th cells in asthma, this review contributes to the pathophysiological understanding and the prospective development of personalized therapeutic treatment strategies for patients suffering from distinct asthma endotypes.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C1300-C1307\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00474.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00474.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
CD4+T 细胞在协调哮喘的免疫反应中起着核心作用,其离子通道特征失调和代谢特征改变会导致疾病的发展和严重程度。哮喘的一种重要分类方法是根据是否存在 T 辅助细胞 2 型(Th2)炎症,将患者分为 Th2 高内型和 Th2 低内型。这些不同的内型对疾病的严重程度、治疗反应和预后都有影响。通过阐明离子通道和能量代谢如何控制哮喘中的Th细胞,这篇综述有助于对病理生理学的理解,以及为不同哮喘内型患者制定个性化治疗策略的前景。
Metabolic and ionic control of T cells in asthma endotypes.
CD4+ T cells play a central role in orchestrating the immune response in asthma, with dysregulated ion channel profiles and altered metabolic signatures contributing to disease progression and severity. An important classification of asthma is based on the presence of T-helper cell type 2 (Th2) inflammation, dividing patients into Th2-high and Th2-low endotypes. These distinct endotypes have implications for disease severity, treatment response, and prognosis. By elucidating how ion channels and energy metabolism control Th cells in asthma, this review contributes to the pathophysiological understanding and the prospective development of personalized therapeutic treatment strategies for patients suffering from distinct asthma endotypes.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.