Siwei Yang , Jianan Yu , Qiyang Chen , Xuedong Sun , Yuefeng Hu , Tianhao Su , Jian Li , Long Jin
{"title":"开发基于机器学习的模型并进行外部验证,以预测 MASLD 人口中的前肌少症:来自 2017-2018 年 NHANES 的结果。","authors":"Siwei Yang , Jianan Yu , Qiyang Chen , Xuedong Sun , Yuefeng Hu , Tianhao Su , Jian Li , Long Jin","doi":"10.1016/j.aohep.2024.101585","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction and Objectives</h3><div>With rising prevalence of pre-sarcopenia in metabolic dysfunction-associated steatotic liver disease (MASLD), this study aimed to develop and validate machine learning-based model to identify pre-sarcopenia in MASLD population.</div></div><div><h3>Materials and Methods</h3><div>A total of 571 MASLD subjects were screened from the National Health and Nutrition Examination Survey 2017–2018. This cohort was randomly divided into training set and internal testing set with a ratio of 7:3. Sixty-six MASLD subjects were collected from our institution as external validation set. Four binary classifiers, including Random Forest (RF), support vector machine, and extreme gradient boosting and logistic regression, were fitted to identify pre-sarcopenia. The best-performing model was further validated in external validation set. Model performance was assessed in terms of discrimination and calibration. Shapley Additive explanations were used for model interpretability.</div></div><div><h3>Results</h3><div>The pre-sarcopenia rate was 17.51 % and 15.16 % in NHANES cohort and external validation set, respectively. RF outperformed other models with area under receiver operating characteristic curve (AUROC) of 0.819 (95 %CI: 0.749, 0.889). When six top-ranking features were retained as per variable importance, including weight-adjusted waist, sex, race, creatinine, education and alkaline phosphatase, a final RF model reached an AUROC being 0.824 (0.737, 0.910) and 0.732 (95 %CI: 0.529, 0.936) in internal and external validation sets, respectively. The model robustness was proved in sensitivity analysis. The calibration curve and decision curve analysis confirmed a good calibration capacity and good clinical usage.</div></div><div><h3>Conclusions</h3><div>This study proposed a user-friendly model using explainable machine learning algorithm to predict pre-sarcopenia in MASLD population. A web-based tool was provided to screening pre-sarcopenia in community and hospitalization settings.</div></div>","PeriodicalId":7979,"journal":{"name":"Annals of hepatology","volume":"30 2","pages":"Article 101585"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and external validation of a machine-learning based model to predict pre-sarcopenia in MASLD population: Results from NHANES 2017–2018\",\"authors\":\"Siwei Yang , Jianan Yu , Qiyang Chen , Xuedong Sun , Yuefeng Hu , Tianhao Su , Jian Li , Long Jin\",\"doi\":\"10.1016/j.aohep.2024.101585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction and Objectives</h3><div>With rising prevalence of pre-sarcopenia in metabolic dysfunction-associated steatotic liver disease (MASLD), this study aimed to develop and validate machine learning-based model to identify pre-sarcopenia in MASLD population.</div></div><div><h3>Materials and Methods</h3><div>A total of 571 MASLD subjects were screened from the National Health and Nutrition Examination Survey 2017–2018. This cohort was randomly divided into training set and internal testing set with a ratio of 7:3. Sixty-six MASLD subjects were collected from our institution as external validation set. Four binary classifiers, including Random Forest (RF), support vector machine, and extreme gradient boosting and logistic regression, were fitted to identify pre-sarcopenia. The best-performing model was further validated in external validation set. Model performance was assessed in terms of discrimination and calibration. Shapley Additive explanations were used for model interpretability.</div></div><div><h3>Results</h3><div>The pre-sarcopenia rate was 17.51 % and 15.16 % in NHANES cohort and external validation set, respectively. RF outperformed other models with area under receiver operating characteristic curve (AUROC) of 0.819 (95 %CI: 0.749, 0.889). When six top-ranking features were retained as per variable importance, including weight-adjusted waist, sex, race, creatinine, education and alkaline phosphatase, a final RF model reached an AUROC being 0.824 (0.737, 0.910) and 0.732 (95 %CI: 0.529, 0.936) in internal and external validation sets, respectively. The model robustness was proved in sensitivity analysis. The calibration curve and decision curve analysis confirmed a good calibration capacity and good clinical usage.</div></div><div><h3>Conclusions</h3><div>This study proposed a user-friendly model using explainable machine learning algorithm to predict pre-sarcopenia in MASLD population. A web-based tool was provided to screening pre-sarcopenia in community and hospitalization settings.</div></div>\",\"PeriodicalId\":7979,\"journal\":{\"name\":\"Annals of hepatology\",\"volume\":\"30 2\",\"pages\":\"Article 101585\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1665268124003685\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of hepatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1665268124003685","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Development and external validation of a machine-learning based model to predict pre-sarcopenia in MASLD population: Results from NHANES 2017–2018
Introduction and Objectives
With rising prevalence of pre-sarcopenia in metabolic dysfunction-associated steatotic liver disease (MASLD), this study aimed to develop and validate machine learning-based model to identify pre-sarcopenia in MASLD population.
Materials and Methods
A total of 571 MASLD subjects were screened from the National Health and Nutrition Examination Survey 2017–2018. This cohort was randomly divided into training set and internal testing set with a ratio of 7:3. Sixty-six MASLD subjects were collected from our institution as external validation set. Four binary classifiers, including Random Forest (RF), support vector machine, and extreme gradient boosting and logistic regression, were fitted to identify pre-sarcopenia. The best-performing model was further validated in external validation set. Model performance was assessed in terms of discrimination and calibration. Shapley Additive explanations were used for model interpretability.
Results
The pre-sarcopenia rate was 17.51 % and 15.16 % in NHANES cohort and external validation set, respectively. RF outperformed other models with area under receiver operating characteristic curve (AUROC) of 0.819 (95 %CI: 0.749, 0.889). When six top-ranking features were retained as per variable importance, including weight-adjusted waist, sex, race, creatinine, education and alkaline phosphatase, a final RF model reached an AUROC being 0.824 (0.737, 0.910) and 0.732 (95 %CI: 0.529, 0.936) in internal and external validation sets, respectively. The model robustness was proved in sensitivity analysis. The calibration curve and decision curve analysis confirmed a good calibration capacity and good clinical usage.
Conclusions
This study proposed a user-friendly model using explainable machine learning algorithm to predict pre-sarcopenia in MASLD population. A web-based tool was provided to screening pre-sarcopenia in community and hospitalization settings.
期刊介绍:
Annals of Hepatology publishes original research on the biology and diseases of the liver in both humans and experimental models. Contributions may be submitted as regular articles. The journal also publishes concise reviews of both basic and clinical topics.