Ming Zhong, Wenxia Xu, Biao Tang, Qiang Zhao, Zenan Jiang, Yinfeng Liu
{"title":"GAS5通过miR-495-3p/SIX1和IGF2BP2/NRF2双调控途径促进冠心病内皮祖细胞的糖代谢重编程和抗铁细胞沉积。","authors":"Ming Zhong, Wenxia Xu, Biao Tang, Qiang Zhao, Zenan Jiang, Yinfeng Liu","doi":"10.14715/cmb/2024.70.9.17","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to explore the potential along with mechanism of lncRNA growth arrest-specific 5 (GAS5) in modulating glucose metabolism and ferroptosis of endothelial progenitor cells (EPCs) in coronary heart disease (CHD). CCK-8, flow cytometry, EdU, colony formation, scratch test as well as transwell assays were implemented to assess cell biological behaviors. Glucose uptake testing, lactic acid production assay, and detection of extracellular acidification rate (EACR) together with oxygen consumption rate (OCR) were used to assess glucose metabolism. Iron, GSH and MDA detection were used to measure ferroptosis. Besides, a series of mechanical experiments were implemented to clarify the modulatory relationship between GAS5 and nuclear factor erythroid 2-related factor 2 (NRF2) as well as sine oculis homeobox 1 (SIX1). We found that GAS5 was down-regulated in CHD patients relative to healthy controls. GAS5 depletion repressed EPCs proliferation, migration along with invasion while elevated cell apoptosis. GAS5 promoted the reprogramming of glucose metabolism and inhibited ferroptosis in EPCs. GAS5 affected glycometabolic reprogramming and ferroptosis resistance through regulating SIX1 and NRF2. On the one hand, GAS5 promoted NRF2 mRNA stability through IGF2BP2. On the other hand, GAS5 regulated the miR-495-3p/SIX1 axis in EPCs. To sum up, GAS5 promotes glucose metabolism reprogramming and resistance to ferroptosis of EPCs through the miR-495-3p/SIX1 and IGF2BP2/NRF2 dual-regulatory pathways in CHD.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAS5 promotes glucose metabolism reprogramming and resistance to ferroptosis of endothelial progenitor cells through the miR-495-3p/SIX1 and IGF2BP2/NRF2 dual-regulatory pathways in coronary heart disease.\",\"authors\":\"Ming Zhong, Wenxia Xu, Biao Tang, Qiang Zhao, Zenan Jiang, Yinfeng Liu\",\"doi\":\"10.14715/cmb/2024.70.9.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We aimed to explore the potential along with mechanism of lncRNA growth arrest-specific 5 (GAS5) in modulating glucose metabolism and ferroptosis of endothelial progenitor cells (EPCs) in coronary heart disease (CHD). CCK-8, flow cytometry, EdU, colony formation, scratch test as well as transwell assays were implemented to assess cell biological behaviors. Glucose uptake testing, lactic acid production assay, and detection of extracellular acidification rate (EACR) together with oxygen consumption rate (OCR) were used to assess glucose metabolism. Iron, GSH and MDA detection were used to measure ferroptosis. Besides, a series of mechanical experiments were implemented to clarify the modulatory relationship between GAS5 and nuclear factor erythroid 2-related factor 2 (NRF2) as well as sine oculis homeobox 1 (SIX1). We found that GAS5 was down-regulated in CHD patients relative to healthy controls. GAS5 depletion repressed EPCs proliferation, migration along with invasion while elevated cell apoptosis. GAS5 promoted the reprogramming of glucose metabolism and inhibited ferroptosis in EPCs. GAS5 affected glycometabolic reprogramming and ferroptosis resistance through regulating SIX1 and NRF2. On the one hand, GAS5 promoted NRF2 mRNA stability through IGF2BP2. On the other hand, GAS5 regulated the miR-495-3p/SIX1 axis in EPCs. To sum up, GAS5 promotes glucose metabolism reprogramming and resistance to ferroptosis of EPCs through the miR-495-3p/SIX1 and IGF2BP2/NRF2 dual-regulatory pathways in CHD.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.14715/cmb/2024.70.9.17\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14715/cmb/2024.70.9.17","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
GAS5 promotes glucose metabolism reprogramming and resistance to ferroptosis of endothelial progenitor cells through the miR-495-3p/SIX1 and IGF2BP2/NRF2 dual-regulatory pathways in coronary heart disease.
We aimed to explore the potential along with mechanism of lncRNA growth arrest-specific 5 (GAS5) in modulating glucose metabolism and ferroptosis of endothelial progenitor cells (EPCs) in coronary heart disease (CHD). CCK-8, flow cytometry, EdU, colony formation, scratch test as well as transwell assays were implemented to assess cell biological behaviors. Glucose uptake testing, lactic acid production assay, and detection of extracellular acidification rate (EACR) together with oxygen consumption rate (OCR) were used to assess glucose metabolism. Iron, GSH and MDA detection were used to measure ferroptosis. Besides, a series of mechanical experiments were implemented to clarify the modulatory relationship between GAS5 and nuclear factor erythroid 2-related factor 2 (NRF2) as well as sine oculis homeobox 1 (SIX1). We found that GAS5 was down-regulated in CHD patients relative to healthy controls. GAS5 depletion repressed EPCs proliferation, migration along with invasion while elevated cell apoptosis. GAS5 promoted the reprogramming of glucose metabolism and inhibited ferroptosis in EPCs. GAS5 affected glycometabolic reprogramming and ferroptosis resistance through regulating SIX1 and NRF2. On the one hand, GAS5 promoted NRF2 mRNA stability through IGF2BP2. On the other hand, GAS5 regulated the miR-495-3p/SIX1 axis in EPCs. To sum up, GAS5 promotes glucose metabolism reprogramming and resistance to ferroptosis of EPCs through the miR-495-3p/SIX1 and IGF2BP2/NRF2 dual-regulatory pathways in CHD.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.