Madiana Magalhães Moreira, Ana Larissa da Silva, Rita de Cássia Sousa Pereira, Lucas Renan Rocha da Silva, Victor Pinheiro Feitosa, Diego Lomonaco
{"title":"用生物基三甲基丙烯酸酯替代双-GMA 对实验性树脂复合材料的物理化学和机械性能的影响。","authors":"Madiana Magalhães Moreira, Ana Larissa da Silva, Rita de Cássia Sousa Pereira, Lucas Renan Rocha da Silva, Victor Pinheiro Feitosa, Diego Lomonaco","doi":"10.1007/s00784-024-05959-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To analyze the incorporation of cardanol trimethacrylate monomer (CTMA), derived from the cashew nut shell liquid, as a substitute for Bis-GMA in acrylic resins formulations and its effect on experimental resin composites' physicochemical and mechanical properties.</p><p><strong>Materials and methods: </strong>The intermediary cardanol epoxy was synthesized via cardanol epoxidation, followed by the synthesis of CTMA through methacrylic anhydride solvent-free esterification. Experimental resin composites were formulated with an organic matrix composed of Bis-GMA/TEGDMA (50/50 wt %) (control). CTMA was gradually added to replace different proportions of Bis-GMA: 10 wt % (CTMA-10), 20 wt % (CTMA-20), 40 wt % (CTMA-40), and 50 wt % (CTMA-50). The composites were characterized by degree of conversion, water sorption and solubility, viscosity, thermogravimetric analysis, dynamic mechanical analysis, flexural strength and elastic modulus. Data were analyzed with one-way ANOVA and Tukey's post-hoc test (α = 0.05), except for water sorption data, which were analyzed by Kruskall-Wallis and Dunn's method.</p><p><strong>Results: </strong>CTMA-based and control composites did not show statistically significant differences regarding degree of conversion, flexural strength and elastic modulus. CTMA reduced the viscosity and solubility compared to the Bis-GMA-based composite. The CTMA-40 and CTMA-50 exhibited significantly lower water sorption compared to the control. Also, acceptable thermal stability and viscoelastic properties were obtained for safe use in the oral cavity.</p><p><strong>Conclusions: </strong>Incorporating CTMA into composites resulted in similar chemical and mechanical properties compared to Bis-GMA-based material while reducing viscosity, water sorption and solubility.</p><p><strong>Clinical relevance: </strong>CTMA could be used as a trimethacrylate monomer replacing Bis-GMA in resin composites, thereby minimizing BPA exposure.</p>","PeriodicalId":10461,"journal":{"name":"Clinical Oral Investigations","volume":"28 11","pages":"578"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of replacing Bis-GMA with a biobased trimethacrylate on the physicochemical and mechanical properties of experimental resin composites.\",\"authors\":\"Madiana Magalhães Moreira, Ana Larissa da Silva, Rita de Cássia Sousa Pereira, Lucas Renan Rocha da Silva, Victor Pinheiro Feitosa, Diego Lomonaco\",\"doi\":\"10.1007/s00784-024-05959-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To analyze the incorporation of cardanol trimethacrylate monomer (CTMA), derived from the cashew nut shell liquid, as a substitute for Bis-GMA in acrylic resins formulations and its effect on experimental resin composites' physicochemical and mechanical properties.</p><p><strong>Materials and methods: </strong>The intermediary cardanol epoxy was synthesized via cardanol epoxidation, followed by the synthesis of CTMA through methacrylic anhydride solvent-free esterification. Experimental resin composites were formulated with an organic matrix composed of Bis-GMA/TEGDMA (50/50 wt %) (control). CTMA was gradually added to replace different proportions of Bis-GMA: 10 wt % (CTMA-10), 20 wt % (CTMA-20), 40 wt % (CTMA-40), and 50 wt % (CTMA-50). The composites were characterized by degree of conversion, water sorption and solubility, viscosity, thermogravimetric analysis, dynamic mechanical analysis, flexural strength and elastic modulus. Data were analyzed with one-way ANOVA and Tukey's post-hoc test (α = 0.05), except for water sorption data, which were analyzed by Kruskall-Wallis and Dunn's method.</p><p><strong>Results: </strong>CTMA-based and control composites did not show statistically significant differences regarding degree of conversion, flexural strength and elastic modulus. CTMA reduced the viscosity and solubility compared to the Bis-GMA-based composite. The CTMA-40 and CTMA-50 exhibited significantly lower water sorption compared to the control. Also, acceptable thermal stability and viscoelastic properties were obtained for safe use in the oral cavity.</p><p><strong>Conclusions: </strong>Incorporating CTMA into composites resulted in similar chemical and mechanical properties compared to Bis-GMA-based material while reducing viscosity, water sorption and solubility.</p><p><strong>Clinical relevance: </strong>CTMA could be used as a trimethacrylate monomer replacing Bis-GMA in resin composites, thereby minimizing BPA exposure.</p>\",\"PeriodicalId\":10461,\"journal\":{\"name\":\"Clinical Oral Investigations\",\"volume\":\"28 11\",\"pages\":\"578\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Oral Investigations\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00784-024-05959-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Oral Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00784-024-05959-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Effect of replacing Bis-GMA with a biobased trimethacrylate on the physicochemical and mechanical properties of experimental resin composites.
Objectives: To analyze the incorporation of cardanol trimethacrylate monomer (CTMA), derived from the cashew nut shell liquid, as a substitute for Bis-GMA in acrylic resins formulations and its effect on experimental resin composites' physicochemical and mechanical properties.
Materials and methods: The intermediary cardanol epoxy was synthesized via cardanol epoxidation, followed by the synthesis of CTMA through methacrylic anhydride solvent-free esterification. Experimental resin composites were formulated with an organic matrix composed of Bis-GMA/TEGDMA (50/50 wt %) (control). CTMA was gradually added to replace different proportions of Bis-GMA: 10 wt % (CTMA-10), 20 wt % (CTMA-20), 40 wt % (CTMA-40), and 50 wt % (CTMA-50). The composites were characterized by degree of conversion, water sorption and solubility, viscosity, thermogravimetric analysis, dynamic mechanical analysis, flexural strength and elastic modulus. Data were analyzed with one-way ANOVA and Tukey's post-hoc test (α = 0.05), except for water sorption data, which were analyzed by Kruskall-Wallis and Dunn's method.
Results: CTMA-based and control composites did not show statistically significant differences regarding degree of conversion, flexural strength and elastic modulus. CTMA reduced the viscosity and solubility compared to the Bis-GMA-based composite. The CTMA-40 and CTMA-50 exhibited significantly lower water sorption compared to the control. Also, acceptable thermal stability and viscoelastic properties were obtained for safe use in the oral cavity.
Conclusions: Incorporating CTMA into composites resulted in similar chemical and mechanical properties compared to Bis-GMA-based material while reducing viscosity, water sorption and solubility.
Clinical relevance: CTMA could be used as a trimethacrylate monomer replacing Bis-GMA in resin composites, thereby minimizing BPA exposure.
期刊介绍:
The journal Clinical Oral Investigations is a multidisciplinary, international forum for publication of research from all fields of oral medicine. The journal publishes original scientific articles and invited reviews which provide up-to-date results of basic and clinical studies in oral and maxillofacial science and medicine. The aim is to clarify the relevance of new results to modern practice, for an international readership. Coverage includes maxillofacial and oral surgery, prosthetics and restorative dentistry, operative dentistry, endodontics, periodontology, orthodontics, dental materials science, clinical trials, epidemiology, pedodontics, oral implant, preventive dentistiry, oral pathology, oral basic sciences and more.